Deep stochastic radar models

Accurate simulation and validation of advanced driver assistance systems requires accurate sensor models. Modeling automotive radar is complicated by effects such as multipath reflections, interference, reflective surfaces, discrete cells, and attenuation. Detailed radar simulations based on physical principles exist but are computationally intractable for realistic automotive scenes. This paper describes a methodology for the construction of stochastic automotive radar models based on deep learning with adversarial loss connected to real-world data. The resulting model exhibits fundamental radar effects while remaining real-time capable.

[1]  Jürgen Dickmann,et al.  Making Bertha See Even More: Radar Contribution , 2015, IEEE Access.

[2]  M. Jeffrey Barney GPU advancements reduce simulation times for 25 GHz automotive radar models , 2015, 2015 9th European Conference on Antennas and Propagation (EuCAP).

[3]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[4]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[5]  Hermann Rohling,et al.  Automotive radar , 2004, Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (WILGA).

[6]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[7]  S. Srihari Mixture Density Networks , 1994 .

[8]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[10]  Bin Yang,et al.  Simulation of Automotive Radar Target Lists considering Clutter and Limited Resolution , 2011 .

[11]  Claudio Turchetti,et al.  Stochastic Models of Neural Networks , 2004 .

[12]  Oleg A. Krasnov,et al.  Ray-tracing simulator for radar signals propagation in radar networks , 2013, 2013 European Radar Conference.

[13]  Martial Hebert,et al.  An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders , 2016, ECCV.

[14]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[15]  Andreas Krause,et al.  Advances in Neural Information Processing Systems (NIPS) , 2014 .

[16]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[17]  Arno Eichberger,et al.  Radarsensormodell für den virtuellen Entwicklungsprozess , 2015 .

[18]  W. Wiesbeck,et al.  Extraction of Virtual Scattering Centers of Vehicles by Ray-Tracing Simulations , 2008, IEEE Transactions on Antennas and Propagation.

[19]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[20]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[21]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[22]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Heiga Zen,et al.  Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  Carl Doersch,et al.  Tutorial on Variational Autoencoders , 2016, ArXiv.

[25]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[26]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[27]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[28]  Zhe Gan,et al.  Variational Autoencoder for Deep Learning of Images, Labels and Captions , 2016, NIPS.

[29]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[30]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .