Modelling of an ASR countercurrent pyrolysis reactor with nonlinear kinetics

The main objective of this work is focused on the modelling of a steady-state reactor where an automotive shredder residue (ASR) is subject to pyrolysis. The gas and solid temperature inside the reactor and the relevant density profiles of both phases are simulated for fixed values of the geometry of the apparatus and a lumped kinetic model is adopted to take into account the high heterogeneity of the ASR material. The key elements for the simulation are the inlet solid temperature and the outlet gas temperature. The problem is modelled by a system of first-order boundary-value ordinary differential equations and it is solved by means of a relaxation technique owing to the nonlinearities contained in the chemical kinetic expression.