Investigation of pillar thickness variation effect on oblique rotating implantation (ORI)-based vertical double gate MOSFET

The rapid scaling of integrated circuit requires further shrinkage of lateral device dimension, which correlates with pillar thickness in vertical structure. This paper investigates the effect of pillar thickness variation on vertical double gate MOSFET (VDGM) fabricated using oblique rotating ion implantation (ORI) method. For this purpose, several scenarios of silicon pillar thickness t"s"i were evaluated for 20-100nm channel length. The source region was found to merge at pillar thickness below 75nm, which results in floating body effect and creates isolated region in the middle of pillar. The vertical devices using ORI method show better performance than those with conventional implantation method for all pillar thickness, due to the elimination of corner effect that degrades the gate control. The presence of isolated depletion region in the middle of pillar at floating body increases parasitic effect for higher drain potential. By further reduction of pillar thickness towards fully depleted feature, the increase in gate-to gate charge coupling improves the performance of ORI-based vertical double gate MOSFET, as evident in near-ideal swing value and lower DIBL, compared to the partially depleted and body-tied device.

[1]  William F. Richardson,et al.  Sub-100-nm vertical MOSFET with threshold voltage adjustment , 2002 .

[2]  Arvind Kumar,et al.  Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..

[3]  Burn Jeng Lin,et al.  The ending of optical lithography and the prospects of its successors , 2006 .

[4]  Peter M. Zeitzoff 2007 International Technology Roadmap: MOSFET scaling challenges , 2008 .

[5]  P. Ashburn,et al.  Depletion-isolation effect in vertical MOSFETs during the transition from partial to fully depleted operation , 2006, IEEE Transactions on Electron Devices.

[6]  E. Suzuki,et al.  Ultrathin channel vertical DG MOSFET fabricated by using ion-bombardment-retarded etching , 2004, IEEE Transactions on Electron Devices.

[7]  J. Moers Turning the world vertical: MOSFETs with current flow perpendicular to the wafer surface , 2007 .

[8]  Masato Koyama,et al.  Recessed channel and/or buried source/drain structures for improvement in performance of Schottky barrier source/drain transistors with high-k gate dielectrics , 2007 .

[9]  Zhibin Xiong,et al.  An ultrathin vertical channel MOSFET for sub-100-nm applications , 2003 .

[10]  Hongxia Ren,et al.  The influence of geometric structure on the hot-carrier-effect immunity for deep-sub-micron grooved gate PMOSFET , 2002 .

[11]  Frank Schwierz,et al.  On the suitability of DD and HD models for the simulation of nanometer double-gate MOSFETs , 2003 .

[12]  Z. Ren,et al.  Simulation of nanoscale MOSFETs: a scattering theory interpretation , 2000 .

[13]  Kelin J. Kuhn CMOS scaling beyond 32nm: Challenges and opportunities , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[14]  T. Nigam,et al.  The vertical replacement-gate (VRG) MOSFET , 2002 .

[15]  J. Hutchby,et al.  THE ROAD TO THE END OF CMOS SCALING , 2004 .

[16]  Mark Lundstrom,et al.  Drift-diffusion equation for ballistic transport in nanoscale metal-oxide-semiconductor field effect transistors , 2002 .

[17]  P. Ashburn,et al.  Shallow junctions on pillar sidewalls for sub-100-nm vertical MOSFETs , 2006, IEEE Electron Device Letters.

[18]  Peter Kordos,et al.  Vertical p-MOSFETs with gate oxide deposition before selective epitaxial growth , 1999 .

[19]  U. Langmann,et al.  Short-channel vertical sidewall MOSFETs , 2001 .

[20]  M. Marso,et al.  Vertical double-gate MOSFETs , 2004, The Fifth International Conference on Advanced Semiconductor Devices and Microsystems, 2004. ASDAM 2004..

[21]  Meishoku Masahara,et al.  Vertical Double-Gate MOSFET Device Technology , 2006 .

[22]  Daniela De Venuto,et al.  Floating body effects model for fault simulation of fully depleted CMOS/SOI circuits , 2003, Microelectron. J..

[23]  Steve Hall,et al.  Reduction of parasitic capacitance in vertical MOSFETs by spacer local oxidation , 2003 .

[24]  Steve Hall,et al.  Recent developments in deca-nanometer vertical MOSFETs , 2004 .

[25]  Hoon Cho,et al.  A Low-Power, Highly Scalable, Vertical Double-Gate MOSFET Using Novel Processes , 2007, IEEE Transactions on Electron Devices.

[26]  G. A. Armstrong,et al.  Comparative analysis of the DC performance of DG MOSFETs on highly-doped and near-intrinsic silicon layers , 2004, Microelectron. J..

[27]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Toru Toyabe,et al.  A sub-0.1-/spl mu/m grooved gate MOSFET with high immunity to short-channel effects , 1993, Proceedings of IEEE International Electron Devices Meeting.

[29]  张兴,et al.  Corner effects in double-gate/gate-all-around MOSFETs , 2007 .

[30]  Steve Hall,et al.  Single, double and surround gate vertical MOSFETs with reduced parasitic capacitance , 2004 .

[31]  Ching-Te Chuang,et al.  Reducing parasitic BJT effects in partially depleted SOI digital logic circuits , 2008, Microelectron. J..

[32]  T. Skotnicki,et al.  The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance , 2005, IEEE Circuits and Devices Magazine.

[33]  Ismail Saad,et al.  Vertical Double Gate MOSFET For Nanoscale Device With Fully Depleted Feature , 2009 .

[34]  Ismail Saad,et al.  Self-aligned vertical double-gate MOSFET (VDGM) with the oblique rotating ion implantation (ORI) method , 2008, Microelectron. J..

[35]  M. Jagadesh Kumar,et al.  Recessed source concept in nanoscale vertical surrounding gate (VSG) MOSFETs for controlling short-channel effects , 2009 .

[36]  Meishoku Masahara,et al.  Vertical double-gate MOSFET device technology , 2008 .