Bildrekonstruktion und Quantifizierung in der Emissionstomographie

Radionuclide tomographic imaging has substantially benefited from the introduction of statistical image reconstruction. Although the main concepts of these iterative algorithms were published decades ago, their widespread use in clinical routine only became available with faster computers for image processing in the last few years. This article gives an overview of data acquisition and iterative reconstruction in emission tomography, deals with the popular maximum likelihood algorithm, and describes the basics of the maximum a posteriori reconstruction. Prerequisites and corrections necessary for quantification are discussed in the second part of the article on the basis of positron emission tomography. Improvements in technical equipment are expected to stimulate future research into image reconstruction.

[1]  B. F. Hutton,et al.  Improved tolerance to missing data in myocardial perfusion SPET using OSEM reconstruction , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[2]  W. A. Higinbotham,et al.  POSITRON SCANNER FOR LOCATING BRAIN TUMORS , 1961 .

[3]  A J Reader,et al.  Statistical list-mode image reconstruction for the high resolution research tomograph. , 2004, Physics in medicine and biology.

[4]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[5]  S. Alenius,et al.  Bayesian image reconstruction for emission tomography based on median root prior , 1997, European Journal of Nuclear Medicine.

[6]  Jerold Warren Wallis,et al.  An optimal rotator for iterative reconstruction , 1997, IEEE Transactions on Medical Imaging.

[7]  D. Townsend,et al.  The Theory and Practice of 3D PET , 1998, Developments in Nuclear Medicine.

[8]  C. Bohm,et al.  Correction for Scattered Radiation in a Ring Detector Positron Camera by Integral Transformation of the Projections , 1983, Journal of computer assisted tomography.

[9]  Mark Lubberink,et al.  Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[10]  Dan J Kadrmas,et al.  LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms , 2004, Physics in medicine and biology.

[11]  R. A. Brooks,et al.  Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging , 1976, Physics in medicine and biology.

[12]  A. Evans,et al.  Correction for partial volume effects in PET: principle and validation. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  Jerry L Prince,et al.  Measurement of Radiotracer Concentration in Brain Gray Matter Using Positron Emission Tomography: MRI-Based Correction for Partial Volume Effects , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  M. Goitein Three-dimensional density reconstruction from a series of two-dimensional projections , 1972 .

[15]  S Grootoonk,et al.  Performance Evaluation of the Positron Scanner ECAT EXACT , 1992, Journal of computer assisted tomography.

[16]  R. Huesman,et al.  Emission computed tomography , 1979 .

[17]  G Muehllehner,et al.  Section imaging by computer calculation. , 1971, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  Peter Schmidlin,et al.  Improved iterative image reconstruction using variable projection binning and abbreviated convolution , 1994, European Journal of Nuclear Medicine.

[19]  Frank Natterer,et al.  Regularization Techniques in Medical Imaging , 1988 .

[20]  Thomas Beyer,et al.  The use of X-ray CT for attenuation correction of PET data , 1994, Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94.

[21]  K. Lange,et al.  EM reconstruction algorithms for emission and transmission tomography. , 1984, Journal of computer assisted tomography.

[22]  P. Gilbert Iterative methods for the three-dimensional reconstruction of an object from projections. , 1972, Journal of theoretical biology.

[23]  Richard M. Leahy,et al.  Statistic-based MAP image-reconstruction from Poisson data using Gibbs priors , 1992, IEEE Trans. Signal Process..

[24]  Jeffrey A. Fessler,et al.  Statistical Methods for Image Reconstruction , 2004 .

[25]  Albert Macovski,et al.  A Maximum Likelihood Approach to Emission Image Reconstruction from Projections , 1976, IEEE Transactions on Nuclear Science.

[26]  H. Mayberg,et al.  Correction of PET Data for Partial Volume Effects in Human Cerebral Cortex by MR Imaging , 1990, Journal of computer assisted tomography.

[27]  Alvaro R. De Pierro,et al.  A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography , 1995, IEEE Trans. Medical Imaging.

[28]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[29]  R E Carson,et al.  Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[30]  Alvaro R. De Pierro,et al.  A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography , 1996, IEEE Trans. Medical Imaging.

[31]  M. A. Viergever,et al.  Mathematics and Computer Science in Medical Imaging , 1988, NATO ASI Series.

[32]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[33]  E. Hoffman,et al.  Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size , 1979, Journal of computer assisted tomography.

[34]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[35]  Soo Chin Liew,et al.  Description of a prototype emission-transmission computed tomography imaging system. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  P Schmidlin,et al.  Iterative Separation of Sections in Tomographic Scintigrams , 1972, Nuklearmedizin.

[37]  T. Farncombe,et al.  Reducing bladder artifacts in clinical pelvic SPECT images. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  M E Bellemann,et al.  Iterative reconstruction of PET images using a high-overrelaxation single-projection algorithm. , 1997, Physics in medicine and biology.

[39]  M. Bähre,et al.  Eine iterative Strategie zur Bestimmung der Quellverteilung bei der Einzelphotonen-Tomographie mit einer rotierenden Gammakamera (SPECT) , 1988, Nuklearmedizin.

[40]  K. Herholz,et al.  Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. , 1999, European journal of cancer.

[41]  Thomas Beyer,et al.  Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. , 2002, Physics in medicine and biology.

[42]  W. W. Moses,et al.  List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling , 2000, IEEE Transactions on Medical Imaging.

[43]  Gabor T. Herman,et al.  A relaxation method for reconstructing objects from noisy X-rays , 1975, Math. Program..

[44]  Jeffrey A. Fessler Penalized weighted least-squares image reconstruction for positron emission tomography , 1994, IEEE Trans. Medical Imaging.

[45]  Paul Kinahan,et al.  Attenuation correction for a combined 3D PET/CT scanner. , 1998, Medical physics.

[46]  Bernard Bendriem,et al.  Introduction to 3D PET , 1998 .

[47]  Gabor T. Herman,et al.  Algebraic reconstruction techniques can be made computationally efficient [positron emission tomography application] , 1993, IEEE Trans. Medical Imaging.

[48]  J. G. Alessi,et al.  The Algebraic Reconstruction Technique (ART) , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[49]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[50]  Michel Defrise,et al.  Image Reconstruction Algorithms in PET , 2005 .

[51]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[52]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[53]  M. Daube-Witherspoon,et al.  Treatment of axial data in three-dimensional PET. , 1987, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[54]  A. Cormack Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .

[55]  A. Lent,et al.  ART: Mathematics and applications a report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques , 1973 .

[56]  Katja Lindenberg,et al.  Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis , 1993 .

[57]  J. Fessler,et al.  Objective functions for tomographic reconstruction from randoms-precorrected PET scans , 1996, 1996 IEEE Nuclear Science Symposium. Conference Record.

[58]  R. Mohan,et al.  Motion adaptive x-ray therapy: a feasibility study , 2001, Physics in medicine and biology.

[59]  S R Cherry,et al.  Attenuation correction using count-limited transmission data in positron emission tomography. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[60]  D E Kuhl,et al.  Quantitative section scanning using orthogonal tangent correction. , 1973, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[61]  K. Lange Convergence of EM image reconstruction algorithms with Gibbs smoothing. , 1990, IEEE transactions on medical imaging.

[62]  David Brasse,et al.  Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[63]  H. Anger,et al.  LOCALIZATION OF BRAIN TUMORS WITH THE POSITRON SCINTILLATION CAMERA. , 1963, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.