Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction

[1]  N. Zhao,et al.  Design of Solid Electrolytes with Fast Ion Transport: Computation-driven and Practical Approaches , 2023, Energy Material Advances.

[2]  N. Zhao,et al.  Improved stability against moisture and lithium metal by doping F into Li3InCl6 , 2022, Journal of Power Sources.

[3]  Z. Bi,et al.  Insight into synergetic effect of bulk doping and boundary engineering on conductivity of NASICON electrolytes for solid-state Na batteries , 2022, Applied Physics Letters.

[4]  Liquan Chen,et al.  Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites , 2022, Science advances.

[5]  L. Mai,et al.  Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications , 2021, Advanced materials.

[6]  R. Knibbe,et al.  Sc, Ge Co-doping NASICON Boosts Solid State Sodium Ion Batteries Performance , 2021 .

[7]  Jinbao Zhao,et al.  A novel solid electrolyte formed by NASICON-type Li3Zr2Si2PO12 and poly(vinylidene fluoride) for solid state batteries , 2021 .

[8]  Z. Bi,et al.  Different Behaviors of Metal Penetration in Na and Li Solid Electrolytes. , 2020, ACS applied materials & interfaces.

[9]  Chunsheng Wang,et al.  Ultrastable All-Solid-State Sodium Rechargeable Batteries , 2020 .

[10]  Jianneng Liang,et al.  Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries , 2020 .

[11]  Chunsheng Wang,et al.  Interface engineering on cathode side for solid garnet batteries , 2020 .

[12]  G. G. Eshetu,et al.  Electrolytes and Interphases in Sodium‐Based Rechargeable Batteries: Recent Advances and Perspectives , 2020, Advanced Energy Materials.

[13]  Chenglong Zhao,et al.  A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity , 2019 .

[14]  Ya‐Xia Yin,et al.  Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. , 2019, Journal of the American Chemical Society.

[15]  C. Nan,et al.  Solid Garnet Batteries , 2019, Joule.

[16]  Xue-qing Gong,et al.  Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports , 2019, Nature Communications.

[17]  David E.J. Armstrong,et al.  Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries , 2018 .

[18]  Yunhui Huang,et al.  Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3 , 2016 .

[19]  Q. Yan,et al.  Nanostructured metal sulfides for energy storage. , 2014, Nanoscale.

[20]  Haijun Zhang,et al.  Low temperature preparation of tungsten nanoparticles from molten salt , 2014 .

[21]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[22]  Weile Jia,et al.  Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines , 2013, J. Comput. Phys..

[23]  W. Belam Sol–gel chemistry synthesis and DTA–TGA, XRPD, SIC and 7Li, 31P, 29Si MAS–NMR studies on the Li-NASICON Li3Zr2−ySi2−4yP1+4yO12 (0 ⩽ y ⩽ 0.5) system , 2013 .

[24]  Xiangchun Liu Molten salt synthesis of ZnTiO3 powders with around 100 nm grain size crystalline morphology , 2012 .

[25]  James Mack,et al.  Mechanochemistry: opportunities for new and cleaner synthesis. , 2012, Chemical Society reviews.

[26]  W. Belam,et al.  Synthesis and Physico-Chemical Characterizations of the Lithium-Substituted NASICONS Series with General Formula Li2.8Zr2−ySi1.8−4yP1.2+4yO12 where (0 ≤ y ≤ 0.45) , 2007 .

[27]  L. Barbieri,et al.  Sintering and Crystallization of a Glass Powder in the Li2O–ZrO2–SiO2 System , 2005 .

[28]  H. Pfeiffer,et al.  Radiation damage and tritium release from Li–Zr–Si oxides , 2002 .

[29]  M. Shoyama,et al.  Sol–gel synthesis of zircon–effect of addition of lithium ions , 1998 .

[30]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[31]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[32]  Zhaohui Ning,et al.  Na3Zr2Si2PO12 Ceramic Electrolytes for Na-ion Battery: Preparation Using Spray-drying Method and Its Property , 2021, Journal of Inorganic Materials.

[33]  Weile Jia,et al.  The analysis of a plane wave pseudopotential density functional theory code on a GPU machine , 2013, Comput. Phys. Commun..