Ackermann's set theory equals ZF

[1]  Wilhelm Ackermann,et al.  Zur Axiomatik der Mengenlehre , 1956 .

[2]  A. Tarski,et al.  Arithmetical extensions of relational systems , 1958 .

[3]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[4]  H. J. Keisler,et al.  From Accessible to Inaccessible Cardinals , 1967 .

[5]  Azriel Levy,et al.  On Ackermann's set theory , 1959, Journal of Symbolic Logic.

[6]  Rudolf Grewe,et al.  Natural models of ackermann's set theory , 1969, Journal of Symbolic Logic (JSL).

[7]  Azriel Lévy AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .

[8]  Jack Howard Silver,et al.  Some applications of model theory in set theory , 1966 .

[9]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[11]  Alfred Tarski,et al.  From accessible to inaccessible cardinals (Results holding for all accessible cardinal numbers and the problem of their extension to inaccessible ones) , 1964 .

[12]  A. Levy,et al.  A hierarchy of formulas in set theory , 1965 .

[13]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[14]  Leslie H. Tharp On a Set Theory of Bernays , 1967, J. Symb. Log..

[15]  R. Montague,et al.  Natural models of set theories , 1959 .

[16]  A. Levy,et al.  Principles of partial reflection in the set theories of Zermelo and Ackermann , 1961 .