Ackermann's set theory equals ZF
暂无分享,去创建一个
[1] Wilhelm Ackermann,et al. Zur Axiomatik der Mengenlehre , 1956 .
[2] A. Tarski,et al. Arithmetical extensions of relational systems , 1958 .
[3] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[4] H. J. Keisler,et al. From Accessible to Inaccessible Cardinals , 1967 .
[5] Azriel Levy,et al. On Ackermann's set theory , 1959, Journal of Symbolic Logic.
[6] Rudolf Grewe,et al. Natural models of ackermann's set theory , 1969, Journal of Symbolic Logic (JSL).
[7] Azriel Lévy. AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .
[8] Jack Howard Silver,et al. Some applications of model theory in set theory , 1966 .
[9] K. Gödel. The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[10] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .
[11] Alfred Tarski,et al. From accessible to inaccessible cardinals (Results holding for all accessible cardinal numbers and the problem of their extension to inaccessible ones) , 1964 .
[12] A. Levy,et al. A hierarchy of formulas in set theory , 1965 .
[13] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[14] Leslie H. Tharp. On a Set Theory of Bernays , 1967, J. Symb. Log..
[15] R. Montague,et al. Natural models of set theories , 1959 .
[16] A. Levy,et al. Principles of partial reflection in the set theories of Zermelo and Ackermann , 1961 .