Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting

The last decade has witnessed a remarkable growth in the telecommunication industry. With the introduction of smart gadgets, the demand for high data rate and bandwidth for wireless applications have increased exponentially at the cost of exponential consumption of energy. The latter is pushing the research and industry communities to devise green communication solutions that require the design of energy saving devices and techniques in one part and ambient energy harvesting techniques in the other part. With the advent of nanocomponents fabrication technology, researchers are now able to tap into the THz frequency regime and fabricate optical low profile antennas at a nanoscale. Optical antennas have proved their potential and are revolutionizing a class of novel optical detectors, interconnectors, sensors, and energy harvesting related fields. Authors in this paper propose an equilateral triangular dielectric resonator nantenna (ETDRNA) working at 193.5 THz standard optical frequency. The simulated antenna achieves an impedance bandwidth from 192.3 THz to 197.3 THz with an end-fire directivity of 8.6 dBi, covering the entire standard optical window of C-band. Numerical demonstrations prove the efficiency of the nantenna at the frequencies of interest, making it a viable candidate for future green energy harvesting and high speed optical applications.

[1]  Saulius Juodkazis,et al.  Sierpin´ski fractal plasmonic nanoantennas , 2011 .

[2]  C. Jagadish,et al.  Merging Photonic Wire Lasers and Nanoantennas , 2011, Journal of Lightwave Technology.

[3]  Prakash Bhartia,et al.  Dielectric resonator antennas—a review and general design relations for resonant frequency and bandwidth , 1994 .

[4]  Annemarie Pucci,et al.  Resonances of individual lithographic gold nanowires in the infrared , 2008 .

[5]  P. Guillon,et al.  Dielectric resonators , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..

[6]  Amadeu Griol,et al.  Sorting linearly polarized photons with a single scatterer. , 2014, Optics letters.

[7]  Leila Yousefi,et al.  Waveguide-fed optical hybrid plasmonic patch nano-antenna. , 2012, Optics express.

[8]  Shi-Wei Qu,et al.  Plasmonic nanopatch array for optical integrated circuit applications , 2013, Scientific Reports.

[9]  Malin Premaratne,et al.  Coupling of light from microdisk lasers into plasmonic nano-antennas. , 2009, Optics express.

[10]  A.A. Kishk,et al.  Analysis of dielectric-resonator antennas with emphasis on hemispherical structures , 1994, IEEE Antennas and Propagation Magazine.

[11]  A. Ittipiboon,et al.  A half-split cylindrical dielectric resonator antenna using slot-coupling , 1993, IEEE Microwave and Guided Wave Letters.

[12]  R. L. Bailey,et al.  A Proposed New Concept for a Solar-Energy Converter , 1972 .

[13]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[14]  T. Kuwashima,et al.  Neutralize CO2 emissions by Product Contributions , 2012, 2012 Electronics Goes Green 2012+.

[15]  Ahmed A. Kishk,et al.  A triangular dielectric resonator antenna excited by a coaxial probe , 2001 .

[16]  Ziyuan Li,et al.  Driving plasmonic nanoantennas with triangular lasers and slot waveguides. , 2011, Applied optics.

[17]  Md. Abdul Matin,et al.  Analytical Deduction of the Salient Properties of a Half Wavelength J-Pole Antenna , 2010, 2010 International Conference on Computational Intelligence and Communication Networks.

[18]  William L. Schaich,et al.  Measurement of the resonant lengths of infrared dipole antennas , 2000 .

[19]  R. Olmon,et al.  Antenna–load interactions at optical frequencies: impedance matching to quantum systems , 2012, Nanotechnology.

[20]  Yahia M. M. Antar,et al.  Recent advances in dielectric-resonator antenna technology , 1998 .

[21]  Ezzeldin A. Soliman,et al.  Nanocrescent antenna as a transceiver for optical communication systems , 2014, 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC).

[22]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[23]  Harald Giessen,et al.  Imaging and steering an optical wireless nanoantenna link , 2014, Nature Communications.

[24]  Rosdiadee Nordin,et al.  Survey of Green Radio Communications Networks: Techniques and Recent Advances , 2013, J. Comput. Networks Commun..

[25]  Raju Sinha,et al.  Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator , 2015, Scientific Reports.

[26]  M. Scheffler,et al.  Verifying the Drude response , 2006 .

[27]  A. Okaya,et al.  The Dielectric Microwave Resonator , 1962, Proceedings of the IRE.

[28]  Isa Kocakarin,et al.  Glass Superstrate Nanoantennas for Infrared Energy Harvesting Applications , 2013 .

[29]  Yuri S. Kivshar,et al.  Hybrid nanoantennas for directional emission enhancement , 2014 .

[30]  G. N. Malheiros-Silveira,et al.  Breakthroughs in Photonics 2013: Advances in Nanoantennas , 2014, IEEE Photonics Journal.

[31]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[32]  D. Kajfex,et al.  Dielectric Resonators , 1986 .

[33]  H. Ng,et al.  Dielectric Resonator Antennas , 2005 .

[34]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[35]  D. Sikdar,et al.  Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering , 2015 .

[36]  Kwai-Man Luk,et al.  Low profile equilateral-triangular dielectric resonator antenna of very high permittivity , 1999 .

[37]  Ramon Gonzalo,et al.  Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies , 2003 .

[38]  Antonio-Daniele Capobianco,et al.  Flared monopole antennas for 10 µm energy harvesting , 2010, The 40th European Microwave Conference.

[39]  Stuart A. Long,et al.  Rectangular dielectric resonator antenna , 1983 .