Multiuser Millimeter Wave Cloud Radio Access Networks With Hybrid Precoding

This paper investigates the performance of cloud radio access networks (CRANs) for a downlink multiuser millimeter wave (mmWave) system, where randomly distributed remote radio heads (<inline-formula><tex-math notation="LaTeX">${\rm RRH}$</tex-math></inline-formula>s) supported by a central baseband unit (<inline-formula><tex-math notation="LaTeX"> $\mathrm{BBU}$</tex-math></inline-formula>) communicate with multiple mobile equipment (<inline-formula> <tex-math notation="LaTeX">${\rm ME}$</tex-math></inline-formula>s). The fronthaul and access link transmissions are implemented with mmWave frequency bands. The <inline-formula><tex-math notation="LaTeX">${\rm RRH}$</tex-math> </inline-formula>s and <inline-formula><tex-math notation="LaTeX">${\rm ME}$</tex-math></inline-formula>s are modeled as independent poisson point processes. We characterize the outage probability, average latency, and throughput of this system under essential factors, such as blockages, <inline-formula><tex-math notation="LaTeX">${\rm RRH}$ </tex-math></inline-formula> density, and path loss. Two specific <inline-formula><tex-math notation="LaTeX">${\rm ME}$ </tex-math></inline-formula> association scenarios are considered: best channel participation (BCP) and nearest neighbor participation (NNP). We derived for both scenarios, closed-form expressions of outage probability in the noise-limited case, and upper and lower bounds of outage probability in the interference-limited case. Our results show blockages and path loss to have a positive effect of decreasing outage probability. Larger antenna arrays are shown to compensate for communication degradation (outage performance and latency) with higher <inline-formula> <tex-math notation="LaTeX">${\rm RRH}$</tex-math></inline-formula> deployment, which can be considered a tradeoff between intercluster interference and <inline-formula><tex-math notation="LaTeX">${\rm RRH}$</tex-math> </inline-formula> density. Finally, we show that for the <inline-formula><tex-math notation="LaTeX">${\rm ME}$ </tex-math></inline-formula> association process, BCP is the most viable for mmWave CRAN systems due to its outperforming NNP.

[1]  Theodore S. Rappaport,et al.  Millimeter Wave Wireless Communications , 2014 .

[2]  Marco Di Renzo,et al.  Stochastic Geometry Modeling and Analysis of Multi-Tier Millimeter Wave Cellular Networks , 2014, IEEE Transactions on Wireless Communications.

[3]  Robert W. Heath,et al.  An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems , 2015, IEEE Journal of Selected Topics in Signal Processing.

[4]  Simone Morosi,et al.  Design and Assessment of a CE-OFDM-Based mm-Wave 5G Communication System , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[5]  Jonathan Rodriguez,et al.  Low-Cost On-Demand C-RAN Based Mobile Small-Cells , 2016, IEEE Access.

[6]  Jeffrey G. Andrews,et al.  Distributed Antenna Systems with Randomness , 2008, IEEE Transactions on Wireless Communications.

[7]  Caijun Zhong,et al.  Ergodic Capacity Analysis of Amplify-and-Forward MIMO Dual-Hop Systems , 2008, IEEE Transactions on Information Theory.

[8]  Theodore S. Rappaport,et al.  Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks , 2014, IEEE Journal on Selected Areas in Communications.

[9]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[10]  Tharmalingam Ratnarajah,et al.  Modeling and Analysis of Cloud Radio Access Networks Using Matérn Hard-Core Point Processes , 2016, IEEE Transactions on Wireless Communications.

[11]  Robert W. Heath,et al.  Achievable rates of multi-user millimeter wave systems with hybrid precoding , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[12]  Hao Guan,et al.  Future Mobile Communication Networks: Challenges in the Design and Operation , 2012, IEEE Vehicular Technology Magazine.

[13]  Robert W. Heath,et al.  Spatially Sparse Precoding in Millimeter Wave MIMO Systems , 2013, IEEE Transactions on Wireless Communications.

[14]  Jeffrey G. Andrews,et al.  A Comparison of MIMO Techniques in Downlink Millimeter Wave Cellular Networks With Hybrid Beamforming , 2015, IEEE Transactions on Communications.

[15]  Robert W. Heath,et al.  Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems , 2014, IEEE Transactions on Wireless Communications.

[16]  Jeffrey G. Andrews,et al.  Coverage and rate trends in dense urban mmWave cellular networks , 2014, 2014 IEEE Global Communications Conference.

[17]  Huiling Zhu,et al.  Performance Comparison Between Distributed Antenna and Microcellular Systems , 2011, IEEE Journal on Selected Areas in Communications.

[18]  Marco Di Renzo,et al.  Average Rate of Downlink Heterogeneous Cellular Networks over Generalized Fading Channels: A Stochastic Geometry Approach , 2013, IEEE Transactions on Communications.

[19]  Jeffrey G. Andrews,et al.  Tractable Model for Rate in Self-Backhauled Millimeter Wave Cellular Networks , 2014, IEEE Journal on Selected Areas in Communications.

[20]  Marceau Coupechoux,et al.  Multicellular Zero Forcing Precoding Performance in Rayleigh and Shadow Fading , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[21]  Robert W. Heath,et al.  Coverage and capacity of millimeter-wave cellular networks , 2014, IEEE Communications Magazine.

[22]  Nirwan Ansari,et al.  Network Utility Aware Traffic Load Balancing in Backhaul-Constrained Cache-Enabled Small Cell Networks with Hybrid Power Supplies , 2014, IEEE Transactions on Mobile Computing.

[23]  Subramanian Ramanathan,et al.  Software-Defined Network Controlled Switching between Millimeter Wave and Terahertz Small Cells , 2017, ArXiv.

[24]  Inkyu Lee,et al.  Capacity Analysis of Distributed Antenna Systems in a Composite Fading Channel , 2012, IEEE Transactions on Wireless Communications.

[25]  Theodore S. Rappaport,et al.  Millimeter Wave Channel Modeling and Cellular Capacity Evaluation , 2013, IEEE Journal on Selected Areas in Communications.

[26]  Jeffrey G. Andrews,et al.  A tractable model for per user rate in multiuser millimeter wave cellular networks , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[27]  Gerhard Fettweis,et al.  Fronthaul and backhaul requirements of flexibly centralized radio access networks , 2015, IEEE Wireless Communications.

[28]  Jaspreet Singh,et al.  On the feasibility of beamforming in millimeter wave communication systems with multiple antenna arrays , 2014, 2014 IEEE Global Communications Conference.

[29]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[30]  Martin Haenggi,et al.  Stochastic Geometry for Wireless Networks , 2012 .

[31]  Gerhard Fettweis,et al.  Fronthaul for a Flexible Centralization in Cloud Radio Access Networks , 2016 .

[32]  R. Berk,et al.  Continuous Univariate Distributions, Volume 2 , 1995 .

[33]  Yonggang Wen,et al.  Cloud radio access network (C-RAN): a primer , 2015, IEEE Network.

[34]  Yuanming Shi,et al.  Group Sparse Beamforming for Green Cloud-RAN , 2013, IEEE Transactions on Wireless Communications.

[35]  Robert W. Heath,et al.  Coverage and Rate Analysis for Millimeter-Wave Cellular Networks , 2014, IEEE Transactions on Wireless Communications.