Rescuing recombinant proteins by sequestration into the P22 VLP.

Here we report the use of a self-assembling protein cage to sequester and solubilize recombinant proteins which are usually trafficked to insoluble inclusion bodies. Our results suggest that protein cages can be used as novel vehicles to rescue and produce soluble proteins that are otherwise difficult to obtain using conventional methods.

[1]  W. Liebl,et al.  Properties of an α-galactosidase, and structure of its gene galA, within an α- and β-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima , 1998 .

[2]  Corwin M. Nycholat,et al.  Colorful virus-like particles: fluorescent protein packaging by the Qβ capsid. , 2011, Biomacromolecules.

[3]  D. Botstein,et al.  Structure and assembly of the capsid of bacteriophage P22. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  C. Mirkin,et al.  Infinite coordination polymer nano- and microparticle structures. , 2009, Chemical Society reviews.

[5]  R. Kelly,et al.  Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068 , 1997, Applied and environmental microbiology.

[6]  P. Prevelige,et al.  Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. , 2012, Biomacromolecules.

[7]  P. Prevelige,et al.  Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. , 2012, ACS nano.

[8]  S. Casjens,et al.  Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. , 2005, Journal of molecular biology.

[9]  Donald Hilvert,et al.  Directed Evolution of a Protein Container , 2011, Science.

[10]  Charles J. Russell,et al.  An Influenza A/H1N1/2009 Hemagglutinin Vaccine Produced in Escherichia coli , 2010, PloS one.

[11]  P. Prevelige,et al.  Functional domains of bacteriophage P22 scaffolding protein. , 1998, Journal of molecular biology.

[12]  P. Prevelige,et al.  Genetically programmed in vivo packaging of protein cargo and its controlled release from bacteriophage P22. , 2011, Angewandte Chemie.

[13]  W. Hartmeier,et al.  α-Galactosidase of Bifidobacterium adolescentis DSM 20083 , 1999, Current Microbiology.

[14]  J. Lebbink,et al.  Characterization of ß-glycosyl hydrolases from Pyrococcus furiosus , 2001 .

[15]  Hiroshi Handa,et al.  Engineering of SV40-based nano-capsules for delivery of heterologous proteins as fusions with the minor capsid proteins VP2/3. , 2008, Journal of biotechnology.

[16]  M G Finn,et al.  RNA-directed packaging of enzymes within virus-like particles. , 2010, Angewandte Chemie.

[17]  A. Rynda-Apple,et al.  Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. , 2013, ACS nano.

[18]  D. Hilvert,et al.  A simple tagging system for protein encapsulation. , 2006, Journal of the American Chemical Society.

[19]  P. Prevelige,et al.  Virus-like particle nanoreactors: programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid , 2012 .

[20]  W. D. de Vos,et al.  Identification and Molecular Characterization of a Novel Type of α-galactosidase from Pyrococcus furiosus , 2003 .