Structural observability analysis of large scale systems using Modelica and Python

State observability of dynamic systems is a notion which determines how well the states can be inferred from input-output data. For small-scale systems, observability analysis can be done manually, while for large-scale systems an automated systematic approach is advantageous. Here we present an approach based on the concept of structural observability analysis, using graph theory. This approach can be automated and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the structural observability of the systems. The method is demonstrated with a Modelica model created for the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has 39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and parameters in addition to estimating the states are also discussed from the graph-theory point of view. All the software tools used on the analysis are freely available.

[1]  Bernt Lie,et al.  Making Modelica Models Available for Analysis in Python Control Systems Library , 2014 .

[2]  Anushka Perera,et al.  Using CasADi for Optimization and Symbolic Linearization/Extraction of Causality Graphs of Modelica Models via JModelica.Org , 2014 .

[3]  Prodromos Daoutidis,et al.  Structural evaluation of control configurations for multivariable nonlinear processes , 1992 .

[4]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[5]  Frédéric Hamelin,et al.  Observability analysis for structured bilinear systems: A graph-theoretic approach , 2007, Autom..

[6]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[7]  Kurt Johannes Reinschke,et al.  Multivariable Control a Graph-theoretic Approach , 1988 .

[8]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[9]  Albert-László Barabási,et al.  Observability of complex systems , 2013, Proceedings of the National Academy of Sciences.

[10]  Frank Harary,et al.  Graph Theory , 2016 .

[11]  Doreen Meier,et al.  Introduction To Stochastic Control Theory , 2016 .

[12]  Ching-tai Lin Structural controllability , 1974 .

[13]  Bernt Lie,et al.  MODELING OF AN INDUSTRIAL COPPER LEACHING AND ELECTROWINNING PROCESS, WITH VALIDATION AGAINST EXPERIMENTAL DATA , 2008 .

[14]  François E. Cellier,et al.  Continuous System Simulation , 2006 .

[15]  C. Pantelides The consistent intialization of differential-algebraic systems , 1988 .