Tree spanners in planar graphs

A tree t-spanner of a graph G is a spanning subtree T of G in which the distance between every pair of vertices is at most t times their distance in G. Spanner problems have received some attention, mostly in the context of communication networks. It is known that for general unweighted graphs, the problem of deciding the existence of a tree t-spanner can be solved in polynomial time for t=2, while it is NP-hard for any t≥ 4; the case t=3 is open, but has been conjectured to be hard.

[1]  Arnold L. Rosenberg,et al.  Optimal simulations of tree machines , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[2]  DistanceYevgeniy Dodis,et al.  Designing Networks with Bounded Pairwise Distance , 1999 .

[3]  J. Soares Graph Spanners: a Survey , 1992 .

[4]  Dagmar Handke,et al.  NP-Completeness Results for Minimum Planar Spanners , 1998, Discret. Math. Theor. Comput. Sci..

[5]  David P. Dobkin,et al.  Delaunay graphs are almost as good as complete graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[6]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[7]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[8]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[9]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[10]  Arthur L. Liestman,et al.  Additive graph spanners , 1993, Networks.

[11]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Guy Kortsarz,et al.  Generating Sparse 2-Spanners , 1992, J. Algorithms.

[13]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[14]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[15]  Dana S. Richards,et al.  Degree-Constrained Pyramid Spanners , 1995, J. Parallel Distributed Comput..

[16]  Leizhen Cai,et al.  NP-Completeness of Minimum Spanner Problems , 1994, Discret. Appl. Math..

[17]  Eli Upfal,et al.  A tradeoff between space and efficiency for routing tables , 1988, STOC '88.

[18]  Sándor P. Fekete,et al.  Tree spanners in planar graphs , 2001, Discret. Appl. Math..

[19]  Josep Díaz,et al.  Algorithms — ESA '96 , 1996, Lecture Notes in Computer Science.

[20]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[21]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[22]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[23]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[24]  L. Cai Tree spanners: spanning trees that approximate distances , 1992 .

[25]  Guy Kortsarz On the Hardness of Approximating Spanners , 2001, Algorithmica.

[26]  Esko Ukkonen,et al.  Algorithm Theory — SWAT '92 , 1992, Lecture Notes in Computer Science.

[27]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[28]  Arthur L. Liestman,et al.  Grid spanners , 1993, Networks.

[29]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[30]  Sanjeev Khanna,et al.  Design networks with bounded pairwise distance , 1999, STOC '99.