Error Bound for Piecewise Deterministic Processes Modeling Stochastic Reaction Systems

Biological processes involving the random interaction of $d$ species with integer particle numbers are often modeled by a Markov jump process on $\mathbb{N}_{0}^{d}$. Realizations of this process can, in principle, be generated with Gillespie's classical stochastic simulation algorithm, but for very reactive systems this method is usually inefficient. Hybrid models based on piecewise deterministic processes offer an attractive alternative which can decrease the simulation time considerably in applications where species with rather low particle numbers interact with very abundant species. We investigate the convergence of the hybrid model to the original one for a class of reaction systems with two distinct scales. Our main result is an error bound which states that, under suitable assumptions, the hybrid model approximates the marginal distribution of the discrete species and the conditional moments of the continuous species up to an error of $\mathcal{O}\!\left(M^{-1}\right)$, where $M$ is the scaling pa...

[1]  G. Teschke,et al.  A compressive Landweber iteration for solving ill-posed inverse problems , 2008 .

[2]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[3]  W. Dörfler,et al.  Convergence of an adaptive hp finite element strategy in higher space-dimensions , 2010 .

[4]  Winfried Sickel,et al.  Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.

[5]  Wolfgang Dahmen,et al.  Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..

[6]  Wolfgang Dahmen,et al.  Super-Resolution Image Reconstruction by Nonlocal Means Applied to High-Angle Annular Darkfield Scanning Transmission Electron Microscopy (HAADF-STEM) , 2009 .

[7]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , .

[8]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[9]  T. Kurtz,et al.  Submitted to the Annals of Applied Probability ASYMPTOTIC ANALYSIS OF MULTISCALE APPROXIMATIONS TO REACTION NETWORKS , 2022 .

[10]  Martin G. Riedler,et al.  Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes , 2011, J. Comput. Appl. Math..

[11]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[12]  S Zeiser,et al.  Simulation of genetic networks modelled by piecewise deterministic Markov processes. , 2008, IET systems biology.

[13]  G. Plonka The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-Dimensional Data , 2009 .

[14]  D. Lorenz,et al.  Greedy solution of ill-posed problems: error bounds and exact inversion , 2009, 0904.0154.

[15]  J. Goutsias Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. , 2005, The Journal of chemical physics.

[16]  Stefan Engblom,et al.  Computing the moments of high dimensional solutions of the master equation , 2006, Appl. Math. Comput..

[17]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[18]  E. Novak,et al.  Optimal Order of Convergence and (In)Tractability of Multivariate Approximation of Smooth Functions , 2009 .

[19]  Ovidiu Radulescu,et al.  Convergence of stochastic gene networks to hybrid piecewise deterministic processes , 2011, 1101.1431.

[20]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Stephan Dahlke,et al.  A note on quarkonial systems and multilevel partition of unity methods , 2013 .

[22]  Markus Hansen,et al.  On tensor products of quasi-Banach spaces , 2010 .

[23]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[24]  David F. Anderson,et al.  Continuous Time Markov Chain Models for Chemical Reaction Networks , 2011 .

[25]  G. Teschke,et al.  Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints , 2010 .

[26]  G. Teschke,et al.  Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .

[27]  Stefan Engblom Spectral approximation of solutions to the chemical master equation , 2009 .

[28]  Linda R. Petzold,et al.  Chapter 1 Numerical Simulation for Biochemical Kinetics , 2022 .

[29]  Winfried Sickel,et al.  Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .

[30]  Tianhai Tian,et al.  Poisson Runge-Kutta methods for chemical reaction systems , 2004 .

[31]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[32]  W. Hackbusch,et al.  Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .

[33]  Thorsten Rohwedder,et al.  The continuous Coupled Cluster formulation for the electronic Schrödinger equation , 2013 .

[34]  Tiejun Li,et al.  Analysis of Explicit Tau-Leaping Schemes for Simulating Chemically Reacting Systems , 2007, Multiscale Model. Simul..

[35]  Armin Iske,et al.  Optimally Sparse Image Representation by the Easy Path Wavelet Transform , 2012, Int. J. Wavelets Multiresolution Inf. Process..

[36]  Wolfgang Hackbusch,et al.  An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..

[37]  Stephan Dahlke,et al.  Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems , 2010, Adv. Comput. Math..

[38]  Dirk A. Lorenz,et al.  Beyond convergence rates: exact recovery with the Tikhonov regularization with sparsity constraints , 2010, 1001.3276.

[39]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[40]  Reinhold Schneider,et al.  Error estimates for the Coupled Cluster method , 2013 .

[41]  Tobias Jahnke,et al.  An Adaptive Wavelet Method for the Chemical Master Equation , 2009, SIAM J. Sci. Comput..

[42]  Konstantin Grella,et al.  Sparse tensor spherical harmonics approximation in radiative transfer , 2011, J. Comput. Phys..

[43]  Armin Iske,et al.  Curvature analysis of frequency modulated manifolds in dimensionality reduction , 2011 .

[44]  Armin Iske,et al.  Optimal representation of piecewise Hölder smooth bivariate functions by the Easy Path Wavelet Transform , 2013, J. Approx. Theory.

[45]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[46]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions multiplied by explicit correlation factors , 2011 .

[47]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[48]  Desmond J. Higham,et al.  Multilevel Monte Carlo for Continuous Time Markov Chains, with Applications in Biochemical Kinetics , 2011, Multiscale Model. Simul..

[49]  Steffen Dereich,et al.  Multilevel Monte Carlo algorithms for L\'{e}vy-driven SDEs with Gaussian correction , 2011, 1101.1369.

[50]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[51]  Wilhelm Huisinga,et al.  ADAPTIVE SIMULATION OF HYBRID STOCHASTIC AND DETERMINISTIC MODELS FOR BIOCHEMICAL SYSTEMS , 2005 .

[52]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[53]  Christian Bender,et al.  Primal and Dual Pricing of Multiple Exercise Options in Continuous Time , 2011, SIAM J. Financial Math..

[54]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[55]  Muruhan Rathinam,et al.  Consistency and Stability of Tau-Leaping Schemes for Chemical Reaction Systems , 2005, Multiscale Model. Simul..

[56]  Simen Kvaal,et al.  Multiconfigurational time-dependent Hartree method to describe particle loss due to absorbing boundary conditions , 2011, 1102.3899.

[57]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[58]  Tianhai Tian,et al.  A multi-scaled approach for simulating chemical reaction systems. , 2004, Progress in biophysics and molecular biology.

[59]  Tobias Jahnke,et al.  Efficient simulation of discrete stochastic reaction systems with a splitting method , 2010 .

[60]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces , 2012, Numerische Mathematik.

[61]  E. Novak,et al.  On the power of function values for the approximation problem in various settings , 2010, 1011.3682.

[62]  Christian Bender,et al.  Dual pricing of multi-exercise options under volume constraints , 2011, Finance Stochastics.

[63]  Gianluca Setti,et al.  Design and Analysis of Biomolecular Circuits , 2011 .

[64]  A. Arkin,et al.  It's a noisy business! Genetic regulation at the nanomolar scale. , 1999, Trends in genetics : TIG.

[65]  Ovidiu Radulescu,et al.  Hybrid stochastic simplifications for multiscale gene networks , 2009, BMC Systems Biology.

[66]  Gerlind Plonka-Hoch,et al.  Compressive Video Sampling With Approximate Message Passing Decoding , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[67]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[68]  Daniel Rudolf,et al.  Error bounds for computing the expectation by Markov chain Monte Carlo , 2009, Monte Carlo Methods Appl..

[69]  Winfried Sickel,et al.  Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .

[70]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[71]  Reinhold Schneider,et al.  Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..

[72]  T. Kurtz Approximation of Population Processes , 1987 .

[73]  Tobias Jahnke,et al.  On Reduced Models for the Chemical Master Equation , 2011, Multiscale Model. Simul..

[74]  Eric Vanden-Eijnden,et al.  Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. , 2005, The Journal of chemical physics.

[75]  D. Gillespie The chemical Langevin equation , 2000 .

[76]  Daniela Rosca,et al.  A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform , 2011, IEEE Transactions on Image Processing.

[77]  Thomas A. Henzinger,et al.  Hybrid numerical solution of the chemical master equation , 2010, CMSB '10.

[78]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[79]  L. You,et al.  Stochastic vs. deterministic modeling of intracellular viral kinetics. , 2002, Journal of theoretical biology.

[80]  E Weinan,et al.  Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales , 2007, J. Comput. Phys..

[81]  K. Bredies,et al.  Regularization with non-convex separable constraints , 2009 .

[82]  Ulrich W. Kulisch,et al.  The exact dot product as basic tool for long interval arithmetic , 2011, Computing.

[83]  Dan ie l T. Gil lespie A rigorous derivation of the chemical master equation , 1992 .

[84]  Desmond J. Higham,et al.  Modeling and Simulating Chemical Reactions , 2008, SIAM Rev..

[85]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings IV: Errors in L2 and other norms , 2004, J. Complex..

[86]  Reinhold Schneider,et al.  An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .