Methods for nesting rank 3 normalized matching rank-unimodal posets

Anderson and Griggs proved independently that a rank-symmetric-unimodal normalized matching (NM) poset possesses a nested chain decomposition (or nesting), and Griggs later conjectured that this result still holds if we remove the condition of rank-symmetry. We give several methods for constructing nestings of rank-unimodal NM posets of rank 3, which together produce substantial progress towards the rank 3 case of the Griggs nesting conjecture. In particular, we show that certain nearly symmetric posets are nested; we show that certain highly asymmetric rank 3 NM posets are nested; and we use results on minimal rank 1 NM posets to show that certain other rank 3 NM posets are nested.

[1]  Shahriar Shahriari,et al.  Partitioning the Boolean Lattice into Chains of Large Minimum Size , 2002, J. Comb. Theory, Ser. A.

[2]  Shahriar Shahriari,et al.  The generalized Füredi conjecture holds for finite linear lattices , 2006, Discret. Math..

[3]  Shahriar Shahriari,et al.  Long Symmetric Chains in the Boolean Lattice , 1996, J. Comb. Theory, Ser. A.

[4]  David G. C. Horrocks Nested Chain Partitions of Hamiltonian Filters , 1998, J. Comb. Theory, Ser. A.

[5]  K. Engel Sperner Theory , 1996 .

[6]  Jerrold R. Griggs,et al.  Partitioning Boolean lattices into chains of subsets , 1987 .

[7]  Jerrold R. Griggs,et al.  Sufficient Conditions for a Symmetric Chain Order , 1977 .

[8]  Shahriar Shahriari,et al.  Games of Chains and Cutsets in the Boolean Lattice II , 2001, Order.

[9]  Jerrold R. Griggs Matchings, cutsets, and chain partitions in graded posets , 1995, Discret. Math..

[10]  Jerrold R. Griggs Problems on chain partitions , 1988, Discret. Math..

[11]  L. H. Harper The Morphology of Partially Ordered Sets , 1974, J. Comb. Theory, Ser. A.

[12]  Yi Wang Nested chain partitions of LYM posets , 2005, Discret. Appl. Math..

[13]  Hazel Perfect Remark on a criterion for common transversals , 1969 .

[14]  Daniel J. Kleitman,et al.  Normalized Matching in Direct Products of Partial Orders , 1973 .

[15]  Frank Vogt,et al.  Symmetric Chain Decompositions of Linear Lattices , 1997, Comb. Probab. Comput..

[16]  Jerrold R. Griggs,et al.  On Chains and Sperner k-Families in Ranked Posets, II , 1980, J. Comb. Theory, Ser. A.

[17]  Daniel J. Kleitman,et al.  The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.

[18]  Daniel J. Kleitman,et al.  Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.

[19]  Shahriar Shahriari,et al.  Partitioning the Boolean lattice into a minimal number of chains of relatively uniform size , 2003, Eur. J. Comb..

[20]  Neil White,et al.  Partitions into chains of a class of partially ordered sets , 1978 .

[21]  Zbigniew Lonc,et al.  Proof of a conjecture on partitions of a Boolean lattice , 1991 .

[22]  Douglas B. West,et al.  Some Remarks on Normalized Matching , 1983, J. Comb. Theory, Ser. A.

[23]  I. Anderson Combinatorics of Finite Sets , 1987 .

[24]  Shahriar Shahriari,et al.  On Nested Chain Decompositions of Normalized Matching Posets of Rank 3 , 2011, Order.

[25]  Shahriar Shahriari,et al.  A new matching property for posets and existence of disjoint chains , 2004, J. Comb. Theory, Ser. A.