A Multivalent Structure-Specific RNA Binder with Extremely Stable Target Binding but Reduced Interaction with Nonspecific RNAs.

By greatly enhancing binding affinities against target biomolecules, multivalent interactions provide an attractive strategy for biosensing. However, there is also a major concern for increased binding to nonspecific targets by multivalent binding. A range of charge-engineered probes of a structure-specific RNA binding protein PAZ as well as multivalent forms of these PAZ probes were constructed by using diverse multivalent avidin proteins (2-mer, 4-mer, and 24-mer). Increased valency vastly enhanced the binding stability of PAZ to structured target RNA. Surprisingly, nonspecific RNA binding of multivalent PAZ can be reduced even below that of the PAZ monomer by controlling negative charges on both PAZ and multivalent avidin scaffolds. The optimized 24-meric PAZ showed nearly irreversible binding to target RNA with negligible binding to nonspecific RNA, and this ultra-specific 24-meric PAZ probe allowed SERS detection of intact microRNAs at an attomolar level.

[1]  David Baker,et al.  Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site , 2017, Nature Biotechnology.

[2]  Anne Imberty,et al.  Dynamic Cooperative Glycan Assembly Blocks the Binding of Bacterial Lectins to Epithelial Cells. , 2017, Angewandte Chemie.

[3]  J. Lee,et al.  A Rhizavidin Monomer with Nearly Multimeric Avidin-Like Binding Stability Against Biotin Conjugates. , 2016, Angewandte Chemie.

[4]  Ryan C Bailey,et al.  Emerging Biosensing Approaches for microRNA Analysis. , 2016, Analytical chemistry.

[5]  R. Rappuoli,et al.  Self-assembling protein nanoparticles in the design of vaccines , 2015, Computational and Structural Biotechnology Journal.

[6]  E. Jankowsky,et al.  Specificity and nonspecificity in RNA–protein interactions , 2015, Nature Reviews Molecular Cell Biology.

[7]  Yongwon Jung,et al.  Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency , 2015, Nature Communications.

[8]  D. Frenkel,et al.  Designing multivalent probes for tunable superselective targeting , 2015, Proceedings of the National Academy of Sciences.

[9]  Kai Ludwig,et al.  Size dependence of steric shielding and multivalency effects for globular binding inhibitors. , 2015, Journal of the American Chemical Society.

[10]  R. Kane,et al.  Recent Advances in Engineering Polyvalent Biological Interactions , 2014, Biomacromolecules.

[11]  J. Lee,et al.  Ultra-specific zeptomole microRNA detection by plasmonic nanowire interstice sensor with Bi-temperature hybridization. , 2014, Small.

[12]  Chang-Ki Baek,et al.  Thermally phase-transformed In2Se3 nanowires for highly sensitive photodetectors. , 2014, Small.

[13]  S. Campuzano,et al.  Magnetobiosensors based on viral protein p19 for microRNA determination in cancer cells and tissues. , 2014, Angewandte Chemie.

[14]  S. Choi,et al.  Evaluating binding avidities of populations of heterogeneous multivalent ligand-functionalized nanoparticles. , 2014, ACS nano.

[15]  Zhan-Yi Sun,et al.  Multivalente synthetische Glycopeptid‐Lipopeptid‐Antitumorvakzine: Auswirkung des Cluster‐Effekts auf das Abtöten von Tumorzellen , 2014 .

[16]  Yan‐Mei Li,et al.  Synthetic multivalent glycopeptide-lipopeptide antitumor vaccines: impact of the cluster effect on the killing of tumor cells. , 2014, Angewandte Chemie.

[17]  Moritz Waldmann,et al.  A nanomolar multivalent ligand as entry inhibitor of the hemagglutinin of avian influenza. , 2014, Journal of the American Chemical Society.

[18]  W. Turnbull,et al.  Bacterial toxin inhibitors based on multivalent scaffolds. , 2013, Chemical Society reviews.

[19]  Juan Correa,et al.  Real-time evaluation of binding mechanisms in multivalent interactions: a surface plasmon resonance kinetic approach. , 2013, Journal of the American Chemical Society.

[20]  C. Graf,et al.  Multivalenz als chemisches Organisations‐ und Wirkprinzip , 2012 .

[21]  Christina Graf,et al.  Multivalency as a chemical organization and action principle. , 2012, Angewandte Chemie.

[22]  J. Lee,et al.  Fabrication of a structure-specific RNA binder for array detection of label-free microRNA. , 2010, Angewandte Chemie.

[23]  Hyuck-Mo Lee,et al.  Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change. , 2010, Nano letters.

[24]  J. Doudna,et al.  A three-dimensional view of the molecular machinery of RNA interference , 2009, Nature.

[25]  T. Kang,et al.  Single nanowire on a film as an efficient SERS-active platform. , 2009, Journal of the American Chemical Society.

[26]  Laura L. Kiessling,et al.  Synthetische multivalente Liganden als Sonden fÜr die Signaltransduktion , 2006 .

[27]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[28]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[29]  G. M. Whitesides,et al.  Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .