Nickel(II) complexes based on l-amino-acid-derived ligands: synthesis, characterization and study of the role of the supramolecular structure in carbon dioxide capture

Two l-amino-acid-based NiII complexes are reported; while the l-tyrosine derivative is a symmetrical μ3-carbonate-bridged self-assembled trinuclear NiII complex whose formation involves CO2 uptake, the l-phenylalanine analog is a mononuclear system which does not exhibit the same behaviour.

[1]  Patrick McCabe,et al.  Mercury 4.0: from visualization to analysis, design and prediction , 2020, Journal of applied crystallography.

[2]  A. Spek checkCIF validation ALERTS: what they mean and how to respond , 2020, Acta crystallographica. Section E, Crystallographic communications.

[3]  Jaehun Lee,et al.  Tyrosine‐Rich Peptides as a Platform for Assembly and Material Synthesis , 2018, Advanced science.

[4]  E. Gazit,et al.  Organization of Amino Acids into Layered Supramolecular Secondary Structures. , 2018, Accounts of chemical research.

[5]  J. Teran,et al.  Dynamic anticrack propagation in snow , 2018, Nature Communications.

[6]  P. Mayer,et al.  Direct evidence for hula twist and single-bond rotation photoproducts , 2018, Nature Communications.

[7]  D. Chakraborty,et al.  Aminoacid-derivatized Cu (II) complexes: Synthesis, DNA interactions and in vitro cytotoxicity , 2017 .

[8]  O. Wendt,et al.  Synthesis and characterisation of POCsp3OP supported Ni(II) hydroxo, hydroxycarbonyl and carbonate complexes , 2017 .

[9]  Jie Zhou,et al.  Supramolecular biofunctional materials. , 2017, Biomaterials.

[10]  Yunho Lee,et al.  Formation of a tetranickel octacarbonyl cluster from the CO2 reaction of a zero-valent nickel monocarbonyl species , 2016 .

[11]  A. Ellern,et al.  Thioether-terminated nickel(II) coordination clusters with {Ni6} horseshoe- and {Ni8} rollercoaster-shaped cores , 2016 .

[12]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[13]  M. Bowers,et al.  Phenylalanine Oligomers and Fibrils: The Mechanism of Assembly and the Importance of Tetramers and Counterions. , 2015, Journal of the American Chemical Society.

[14]  A. Bianco,et al.  Self-Assembly of Tyrosine into Controlled Supramolecular Nanostructures. , 2015, Chemistry.

[15]  S. Mandal,et al.  Controlling the self-assembly of homochiral coordination architectures of Cu(II) by substitution in amino acid based ligands: synthesis, crystal structures and physicochemical properties. , 2015, Dalton transactions.

[16]  D. Choquesillo-Lazarte,et al.  Is Molecular Chirality Connected to Supramolecular Chirality? The Particular Case of Chiral 2-Pyridyl Alcohols , 2015 .

[17]  G. Sun,et al.  Global pattern for the effect of climate and land cover on water yield , 2015, Nature Communications.

[18]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[19]  T. Kenny,et al.  CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators , 2014, Scientific Reports.

[20]  E. Álvarez,et al.  Reversible Reactions of Ni and Pd Hydroxo Pincer Complexes [(iPrPCP)M–OH] with CO2: Solid‐State Study of the Decarboxylation of the Monomeric Bicarbonate Complexes [(iPrPCP)M–OCOOH] (M = Ni, Pd) , 2013 .

[21]  D. Khushalani,et al.  Single amino acid based self-assembled structure , 2013 .

[22]  Keith S. Murray,et al.  PHI: A powerful new program for the analysis of anisotropic monomeric and exchange‐coupled polynuclear d‐ and f‐block complexes , 2013, J. Comput. Chem..

[23]  S. Tsuzuki,et al.  Linkage control between molecular and supramolecular chirality in 21-helical hydrogen-bonded networks using achiral components , 2013, Nature Communications.

[24]  K. Sekar,et al.  Aromatic-aromatic interactions in structures of proteins and protein-DNA complexes: a study based on orientation and distance , 2012, Bioinformation.

[25]  F. Neese,et al.  Zero-field splitting in a series of structurally related mononuclear Ni(II)-bispidine complexes. , 2012, Inorganic chemistry.

[26]  A. Caflisch,et al.  Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. , 2012, Nature chemical biology.

[27]  Didier Nurizzo,et al.  MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments , 2010, Journal of synchrotron radiation.

[28]  A. J. Blake,et al.  A novel tridentate coordination mode for the carbonatonickel system exhibited in an unusual hexanuclear nickel(II) mu3-carbonato-bridged complex. , 2009, Dalton transactions.

[29]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[30]  D. Dickie,et al.  Insertion of carbon dioxide into main-group complexes: formation of the [N(CO2)3]3- ligand. , 2008, Angewandte Chemie.

[31]  M. Drew,et al.  Coordination-driven self-assembly of a novel carbonato-bridged heteromolecular neutral nickel(II) triangle by atmospheric CO2 fixation. , 2008, Inorganic chemistry.

[32]  J. Reglinski,et al.  Multidentate ligands for the synthesis of multi-metallic complexes , 2008 .

[33]  Ron Zevenhoven,et al.  Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage , 2006 .

[34]  D. Dubois,et al.  Studies of bicarbonate binding by dinuclear and mononuclear Ni(II) complexes. , 2005, Inorganic chemistry.

[35]  M. Stefani Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. , 2004, Biochimica et biophysica acta.

[36]  Frank Neese,et al.  Definition of corresponding orbitals and the diradical character in broken symmetry DFT calculations on spin coupled systems , 2004 .

[37]  Fabio Marchetti,et al.  Converting carbon dioxide into carbamato derivatives. , 2003, Chemical reviews.

[38]  Joan Cano,et al.  About the calculation of exchange coupling constants in polynuclear transition metal complexes , 2003, J. Comput. Chem..

[39]  E. Castellano,et al.  Structural and Single Crystal EPR Studies of the Complex Copper L‐Glutamine: A Weakly Exchange‐Coupled System with syn‐anti Carboxylate Bridges , 2002 .

[40]  Ju-Hyun Park,et al.  EPR spectra from "EPR-silent" species: high-frequency and high-field EPR spectroscopy of pseudotetrahedral complexes of nickel(II). , 2002, Inorganic chemistry.

[41]  V. McKee,et al.  Cascade chemistry in azacryptand cages: bridging carbonates and methylcarbonatesElectronic supplementary information (ESI) available: magnetic data. See http://www.rsc.org/suppdata/dt/b1/b110449g/ , 2002 .

[42]  Pere Alemany,et al.  Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes , 1999, J. Comput. Chem..

[43]  Y. Yamagata,et al.  Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six tyrosine --> phenylalanine mutants. , 1998, Biochemistry.

[44]  William N. Lipscomb,et al.  Recent Advances in Zinc Enzymology. , 1996, Chemical reviews.

[45]  W. Leitner The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey , 1996 .

[46]  Carol A. Fierke,et al.  Carbonic Anhydrase: Evolution of the Zinc Binding Site by Nature and by Design , 1996 .

[47]  X. Solans,et al.  Synthesis, Crystal Structure, and Magnetic Behavior of (&mgr;(3)-CO(3))[Cu(3)(Medpt)(3)(ClO(4))(3)](ClO(4)): A New Copper(II) Carbonato-Bridged Complex with a Triangular Array. , 1996, Inorganic chemistry.

[48]  M. Halmann Chemical Fixation of Carbon Dioxide: Methods for Recycling CO2 into Useful Products , 1993 .

[49]  Evert Jan Baerends,et al.  Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X.alpha. valence bond theory , 1984 .

[50]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[51]  S. Lippard,et al.  A TRICOPPER(II) COMPLEX CONTAINING A TRIPLY BRIDGING CARBONATE GROUP , 1980 .

[52]  W. Wernsdorfer,et al.  Molecular Magnetism , 2021, Handbook of Magnetism and Magnetic Materials.

[53]  Pratibha,et al.  2,6-Diaminopurine-zinc complex for primordial carbon dioxide fixation , 2019, Inorganica Chimica Acta.

[54]  A. Spek PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. , 2015, Acta crystallographica. Section C, Structural chemistry.

[55]  Frank Neese,et al.  The ORCA program system , 2012 .

[56]  R. Winpenny,et al.  Changing cage structures through inter-ligand repulsions , 2000 .

[57]  M. Aresta,et al.  Carbon Dioxide as a Source of Carbon : Biochemical and Chemical Uses , 1987 .

[58]  D. A. Palmer,et al.  THE CHEMISTRY OF METAL CARBONATO AND CARBON DIOXIDE COMPLEXES , 1983 .