FingerGlass: efficient multiscale interaction on multitouch screens

Many tasks in graphical user interfaces require users to interact with elements at various levels of precision. We present FingerGlass, a bimanual technique designed to improve the precision of graphical tasks on multitouch screens. It enables users to quickly navigate to different locations and across multiple scales of a scene using a single hand. The other hand can simultaneously interact with objects in the scene. Unlike traditional pan-zoom interfaces, FingerGlass retains contextual information during the interaction. We evaluated our technique in the context of precise object selection and translation and found that FingerGlass significantly outperforms three state-of-the-art baseline techniques in both objective and subjective measurements: users acquired and translated targets more than 50% faster than with the second-best technique in our experiment.

[1]  Mary Czerwinski,et al.  Drag-and-Pop and Drag-and-Pick: Techniques for Accessing Remote Screen Content on Touch- and Pen-Operated Systems , 2003, INTERACT.

[2]  Gregory D. Abowd,et al.  Interaction techniques for ambiguity resolution in recognition-based interfaces , 2007, SIGGRAPH '07.

[3]  Benjamin B. Bederson,et al.  ThumbSpace: Generalized One-Handed Input for Touchscreen-Based Mobile Devices , 2007, INTERACT.

[4]  Dominik Schmidt,et al.  IdLenses: dynamic personal areas on shared surfaces , 2010, ITS '10.

[5]  Jock D. Mackinlay,et al.  The perspective wall: detail and context smoothly integrated , 1991, CHI.

[6]  Alan Esenther,et al.  Fluid DTMouse: better mouse support for touch-based interactions , 2006, AVI '06.

[7]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[8]  Dennis Proffitt,et al.  Two-handed virtual manipulation , 1998, TCHI.

[9]  Jacob O. Wobbrock,et al.  Enhanced area cursors: reducing fine pointing demands for people with motor impairments , 2010, UIST.

[10]  B. Shneiderman,et al.  Improving the accuracy of touch screens: an experimental evaluation of three strategies , 1988, CHI '88.

[11]  Shumin Zhai,et al.  High precision touch screen interaction , 2003, CHI '03.

[12]  Takeo Igarashi,et al.  Speed-dependent automatic zooming for browsing large documents , 2000, UIST '00.

[13]  Emmanuel Barillot,et al.  Context and interaction in zoomable user interfaces , 2000, AVI '00.

[14]  Steven K. Feiner,et al.  Rubbing and tapping for precise and rapid selection on touch-screen displays , 2008, CHI.

[15]  Jock D. Mackinlay,et al.  The document lens , 1993, UIST '93.

[16]  James D. Hollan,et al.  Pad++: a zooming graphical interface for exploring alternate interface physics , 1994, UIST '94.

[17]  Y. Guiard Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. , 1987, Journal of motor behavior.

[18]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[19]  Stéphane Huot,et al.  TapTap and MagStick: improving one-handed target acquisition on small touch-screens , 2008, AVI '08.

[20]  Ravin Balakrishnan,et al.  Pointing lenses: facilitating stylus input through visual-and motor-space magnification , 2007, CHI.

[21]  Olivier Chapuis,et al.  High-precision magnification lenses , 2010, CHI.

[22]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[23]  Jean-Daniel Fekete,et al.  Mélange: Space Folding for Visual Exploration , 2010, IEEE Transactions on Visualization and Computer Graphics.

[24]  Tomer Moscovich,et al.  Contact area interaction with sliding widgets , 2009, UIST '09.

[25]  Clifton Forlines,et al.  DTLens: multi-user tabletop spatial data exploration , 2005, UIST.

[26]  Mark W. Newman,et al.  Escape: a target selection technique using visually-cued gestures , 2008, CHI.

[27]  Daniel J. Wigdor,et al.  Direct-touch vs. mouse input for tabletop displays , 2007, CHI.

[28]  Benjamin B. Bederson,et al.  Direct Versus Indirect Input Methods for One-Handed Touchscreen Mobile Computing , 2007 .

[29]  Catherine Plaisant,et al.  Navigation patterns and usability of zoomable user interfaces with and without an overview , 2002, TCHI.

[30]  Ken Perlin,et al.  The UnMousePad: an interpolating multi-touch force-sensing input pad , 2009, SIGGRAPH 2009.

[31]  Renaud Blanch,et al.  Semantic pointing: improving target acquisition with control-display ratio adaptation , 2004, CHI.

[32]  Tony DeRose,et al.  Eden: a professional multitouch tool for constructing virtual organic environments , 2011, CHI.

[33]  Patrick Baudisch,et al.  Precise selection techniques for multi-touch screens , 2006, CHI.

[34]  Tovi Grossman,et al.  The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor's activation area , 2005, CHI.

[35]  Daniel Vogel,et al.  Shift: a technique for operating pen-based interfaces using touch , 2007, CHI.