A model-based approach to fault-tolerant control

A model-based approach to fault-tolerant control A model-based controller architecture for Fault-Tolerant Control (FTC) is presented in this paper. The controller architecture is based on a general controller parameterization. The FTC architecture consists of two main parts, a Fault Detection and Isolation (FDI) part and a controller reconfiguration part. The theoretical basis for the architecture is given followed by an investigation of the single parts in the architecture. It is shown that the general controller parameterization is central in connection with both fault diagnosis as well as controller reconfiguration. Especially in relation to the controller reconfiguration part, the application of controller parameterization results in a systematic technique for switching between different controllers. This also allows controller switching using different sets of actuators and sensors.

[1]  M. Massoumnia A geometric approach to the synthesis of failure detection filters , 1986 .

[2]  Stephen L. Campbell,et al.  Auxiliary signal design for rapid multi-model identification using optimization , 2002, Autom..

[3]  H. Niemann,et al.  Delays in fault detection and isolation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[4]  Ramine Nikoukhah,et al.  Auxiliary Signal Design for Failure Detection , 2004 .

[5]  M. Zarrop,et al.  Input design for detection of abrupt changes in dynamical systems , 1994 .

[6]  Mogens Blanke,et al.  Fault-tolerant control systems — A holistic view , 1997 .

[7]  Henrik Niemann,et al.  Parameterisation of extended systems , 2006 .

[8]  François Delebecque,et al.  Detection signal design for failure detection: a robust approach , 2000 .

[9]  Lin Huang,et al.  Some applications of small gain theorem to interconnected systems , 2004, Syst. Control. Lett..

[10]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[11]  Steven X. Ding,et al.  Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis , 1994, Autom..

[12]  Niels Kjølstad Poulsen,et al.  Active Fault Diagnosis Based on Stochastic Tests , 2008, Int. J. Appl. Math. Comput. Sci..

[13]  Niels Kjolstad Poulsen,et al.  Controller architectures for switching , 2009, 2009 American Control Conference.

[14]  Jakob Stoustrup,et al.  Switching between multivariable controllers , 2004 .

[15]  E. A. Woods,et al.  Fault detection, supervision and safety for technical processes , 1993 .

[16]  Xue Jun Zhang,et al.  Auxiliary Signal Design in Fault Detection and Diagnosis , 1989 .

[17]  Niels Kjølstad Poulsen,et al.  Fault Tolerant Control for Uncertain Systems with Parametric Faults , 2006 .

[18]  Niels Kjølstad Poulsen,et al.  Stochastic change detection based on an active fault diagnosis approach , 2007, 2007 46th IEEE Conference on Decision and Control.

[19]  Ron J. Patton,et al.  What is Fault-Tolerant Control? , 2000 .

[20]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[21]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[22]  J. Stoustrup,et al.  An architecture for fault tolerant controllers , 2005 .

[23]  M. V. Iordache,et al.  Diagnosis and Fault-Tolerant Control , 2007, IEEE Transactions on Automatic Control.

[24]  R. Nikoukhah,et al.  Software for auxiliary signal design , 2004, Proceedings of the 2004 American Control Conference.

[25]  Zhang Ren,et al.  A new controller architecture for high performance, robust, and fault-tolerant control , 2001, IEEE Trans. Autom. Control..

[26]  Niels Kjølstad Poulsen,et al.  Interconnection of subsystems in closed-loop systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[27]  Ramine Nikoukhah,et al.  Innovations generation in the presence of unknown inputs: Application to robust failure detection , 1994, Autom..

[28]  Jakob Stoustrup,et al.  Reliable control using the primary and dual Youla parameterizations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[29]  Jakob Stoustrup,et al.  Fault tolerant feedback control using the Youla parameterization , 2001, 2001 European Control Conference (ECC).

[30]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[31]  Ramine Nikoukhah,et al.  Guaranteed Active Failure Detection and Isolation for Linear Dynamical Systems , 1998, Autom..

[32]  H. Niemann Fault tolerant control based on active fault diagnosis , 2005, Proceedings of the 2005, American Control Conference, 2005..

[33]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[34]  Feza Kerestecioglu,et al.  Change Detection and Input Design in Dynamical Systems , 1993 .

[35]  Henrik Niemann Dual Youla parameterisation , 2003 .

[36]  John B. Moore,et al.  High Performance Control , 1997 .

[37]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[38]  Ali Saberi,et al.  Fundamental problems in fault detection and identification , 2000 .

[39]  Niels Kjølstad Poulsen,et al.  Active Fault Diagnosis - A Stochastic Approach , 2009 .

[40]  Henrik Niemann,et al.  A Setup for Active Fault Diagnosis , 2006, IEEE Transactions on Automatic Control.

[41]  François Delebecque,et al.  Rapid Model Selection and the Separability Index , 2000 .