Detecting cyanobacterial blooms in large North European lakes using the Maximum Chlorophyll Index

The Maximum Chlorophyll Index (MCI), developed for the MERIS sensor processing scheme, is used to investigate the seasonal dynamics, spatial distribution, and coverage of cyanobacterial blooms over Lake Peipsi (Estonia/Russia) and Lake

[1]  Anu Reinart,et al.  Validation of the MERIS products on large European lakes: Peipsi, Vänern and Vättern , 2008, Hydrobiologia.

[2]  B. Franz,et al.  Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach , 2007 .

[3]  Roland Doerffer,et al.  Algorithm Theoretical Basis Document (ATBD) , 2008 .

[4]  Carsten Brockmann,et al.  Development of MERIS lake water algorithms: validation results from Europe , 2008 .

[5]  Leslie Brown,et al.  The importance of a band at 709 nm for interpreting water-leaving spectral radiance , 2008 .

[6]  Stefan G. H. Simis,et al.  Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water , 2005 .

[7]  Ian T. Webster,et al.  Effect of wind on the distribution of phytoplankton cells in lakes revisited , 1994 .

[8]  Roland Doerffer,et al.  Algorithm Theoretical Basis Document (ATBD) , 2010 .

[9]  H. Gons,et al.  MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes , 2008 .

[10]  C. McClain A decade of satellite ocean color observations. , 2009, Annual review of marine science.

[11]  O. Pietiläinen,et al.  Site-specific chlorophyll reference conditions for lakes in Northern and Western Europe , 2009, Hydrobiologia.

[12]  P. Nõges,et al.  Factors controlling macrophyte distribution in large shallow Lake Võrtsjärv. , 2007 .

[13]  Tiit Kutser,et al.  Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing , 2004 .

[14]  I. Ott,et al.  Phytoplankton of Lake Peipsi-Pihkva: species composition, biomass and seasonal dynamics , 1996, Hydrobiologia.

[15]  K. Sellner,et al.  Physiology, ecology, and toxic properties of marine cyanobacteria blooms , 1997 .

[16]  Machteld Rijkeboer,et al.  A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters , 2002 .

[17]  G. F. Humphrey,et al.  New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton , 1975 .

[18]  Chuanmin Hu,et al.  Ocean Color Satellites Show Extensive Lines of Floating Sargassum in the Gulf of Mexico , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Jim Gower,et al.  An Antarctic ice-related “superbloom” observed with the MERIS satellite imager , 2007 .

[20]  Variability of optical water types in Lake Peipsi , 2007 .

[21]  U. Mischke,et al.  Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes – an approach to differentiate the habitat properties of Oscillatoriales , 2004, Hydrobiologia.

[22]  Kai Sørensen,et al.  Validation of MERIS water products and bio‐optical relationships in the Skagerrak , 2007 .

[23]  E. Willén,et al.  PREDICTING THE SUMMER PEAK BIOMASS OF FOUR SPECIES OF BLUE-GREEN ALGAE (CYANOPHYTA/CYANOBACTERIA) IN SWEDISH LAKES1 , 1987 .

[24]  J. Haberman,et al.  Significant changes in phyto- and zooplankton in L. Peipsi in recent years: what is the underlying reason? , 2007, Estonian Journal of Ecology.

[25]  K. Ruddick,et al.  Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. , 2001, Applied optics.

[26]  J. Gower,et al.  Global monitoring of plankton blooms using MERIS MCI , 2008 .

[27]  Sampsa Koponen,et al.  Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data , 2002 .

[28]  A. Jaanus,et al.  Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period , 2009, Hydrobiologia.

[29]  John F. Schalles,et al.  Remote measurement of algal chlorophyll in surface waters: The case for the first derivative of reflectance near 690 nm , 1996 .

[30]  Ä. Bilaletdin,et al.  Modelling phytoplankton dynamics of the eutrophic Lake Võrtsjärv, Estonia , 1999, Hydrobiologia.

[31]  J. Kämäri,et al.  Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. , 2001, The Science of the total environment.

[32]  Ragnar Elmgren,et al.  Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability , 2007 .

[33]  Hugo Sarmento,et al.  Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes , 2008, Journal of Applied Phycology.

[34]  P. Hyenstrand,et al.  Pelagic growth and colony division of Gloeotrichia echinulata in Lake Erken , 2004 .

[35]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[36]  Carsten Brockmann,et al.  Using MERIS full resolution data to monitor coastal waters : A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea , 2008 .

[37]  S. Biswas,et al.  Ecology of Phytoplankton of the Volta Lake , 1972, Hydrobiologia.

[38]  M. Potts,et al.  The ecology of cyanobacteria: their diversity in time and space (reviewed by T. Bailey Watts) , 2001 .

[39]  Leslie Brown,et al.  USE OF THE 709 NM BAND OF MERIS TO DETECT INTENSE PLANKTON BLOOMS AND OTHER CONDITIONS IN COASTAL WATERS , 2004 .

[40]  Peeter Nõges,et al.  Critical N:P ratio for cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe , 2008, Hydrobiologia.

[41]  R. Doerffer,et al.  The MERIS Case 2 water algorithm , 2007 .