Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate.

The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.

[1]  Chun Li,et al.  A targeted approach to cancer imaging and therapy. , 2014, Nature materials.

[2]  P. Nordlander,et al.  Three-dimensional plasmonic nanoclusters. , 2013, Nano letters.

[3]  Martijn Wubs,et al.  Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects. , 2013, Optics express.

[4]  S. Bégin-Colin,et al.  Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders. , 2013, Nanoscale.

[5]  F. Moreno,et al.  Quantum optical response of metallic nanoparticles and dimers. , 2012, Optics letters.

[6]  J. Bigot,et al.  Ultrafast magnetoacoustics in nickel films. , 2011, Physical review letters.

[7]  P. Albouy,et al.  Monolayer and multilayer assemblies of spherically and cubic-shaped iron oxide nanoparticles , 2011 .

[8]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[9]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[10]  J. Lee,et al.  Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. , 2009, ACS nano.

[11]  Hongjun Gao,et al.  Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties , 2008 .

[12]  Swee-Ping Chia,et al.  AIP Conference Proceedings , 2008 .

[13]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[14]  Peidong Yang,et al.  Tunable plasmonic lattices of silver nanocrystals. , 2007, Nature nanotechnology.

[15]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[16]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[17]  X. Bao,et al.  Toward monodispersed silver nanoparticles with unusual thermal stability. , 2006, Journal of the American Chemical Society.

[18]  Benjamin G. Janesko,et al.  Chain-length-dependent vibrational resonances in alkanethiol self-assembled monolayers observed on plasmonic nanoparticle substrates. , 2006, Nano letters.

[19]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[20]  Younan Xia,et al.  Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. , 2006, The journal of physical chemistry. B.

[21]  Stephen Mann,et al.  One‐Dimensional Plasmon Coupling by Facile Self‐Assembly of Gold Nanoparticles into Branched Chain Networks , 2005 .

[22]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[23]  P. Albouy,et al.  Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals , 2005, Nature materials.

[24]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[25]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[26]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[27]  J. Gilman,et al.  Nanotechnology , 2001 .

[28]  George C. Schatz,et al.  Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling , 1999 .

[29]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[30]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[31]  Harold G. Craighead,et al.  Optical response and fabrication of regular arrays of ultrasmall gold particles , 1985 .

[32]  H. Takahashi,et al.  Optical absorption of submonolayer gold films: Size dependence of ϵround in small island particles , 1984 .

[33]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[34]  D. Bedeaux,et al.  A statistical theory of the dielectric properties of thin island films: I. The surface material coefficients , 1974 .

[35]  S. Yoshida,et al.  Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film , 1972 .

[36]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[37]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .