A Polynomial Time Algorithm to Compute Geodesics in CAT(0) Cubical Complexes

This paper presents the first polynomial time algorithm to compute geodesics in a CAT(0) cubical complex in general dimension. The algorithm is a simple iterative method to update breakpoints of a path joining two points using Miller, Owen and Provan's algorithm (2015) as a subroutine. Our algorithm is applicable to any CAT(0) space in which geodesics between two close points can be computed, not limited to CAT(0) cubical complexes.

[1]  Martin Roller Poc Sets, Median Algebras and Group Actions , 2016 .

[2]  Joseph S. B. Mitchell,et al.  Touring Convex Bodies - A Conic Programming Solution , 2005, CCCG.

[3]  Seth Sullivant,et al.  Geodesics in CAT(0) Cubical Complexes , 2011, Adv. Appl. Math..

[4]  Jean-Pierre Barthélemy,et al.  Median graphs, parallelism and posets , 1993, Discret. Math..

[5]  M. Bacák Convex Analysis and Optimization in Hadamard Spaces , 2014 .

[6]  Robert Ghrist,et al.  State Complexes for Metamorphic Robots , 2004, Int. J. Robotics Res..

[7]  J. Scott Provan,et al.  A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[8]  Megan Owen,et al.  Computing Geodesic Distances in Tree Space , 2009, SIAM J. Discret. Math..

[9]  S. Gersten,et al.  Small cancellation theory and automatic groups , 1990 .

[10]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[11]  S. M. Gersten,et al.  Small cancellation theory and automatic groups: Part II , 1991 .

[12]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[13]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[14]  Andreas W. M. Dress,et al.  Gated sets in metric spaces , 1987 .

[15]  Micha Sharir,et al.  On shortest paths amidst convex polyhedra , 1987, SCG '86.

[16]  Ezra Miller,et al.  Polyhedral computational geometry for averaging metric phylogenetic trees , 2012, Adv. Appl. Math..

[17]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[18]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[19]  Michah Sageev,et al.  Ends of Group Pairs and Non‐Positively Curved Cube Complexes , 1995 .

[20]  Joseph S. B. Mitchell,et al.  New results on shortest paths in three dimensions , 2004, SCG '04.

[21]  Victor Chepoi,et al.  Shortest path problem in rectangular complexes of global nonpositive curvature , 2010, Comput. Geom..

[22]  Hans-Jürgen Bandelt,et al.  Superextensions and the depth of median graphs , 1991, J. Comb. Theory, Ser. A.

[23]  A. O. Houcine On hyperbolic groups , 2006 .

[24]  Robert Ghrist,et al.  The geometry and topology of reconfiguration , 2007, Adv. Appl. Math..

[25]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains , 1979, Semantics of Concurrent Computation.

[26]  Martyn Mulder,et al.  The structure of median graphs , 1978, Discret. Math..

[27]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[28]  Steven M. LaValle,et al.  Nonpositive Curvature and Pareto Optimal Coordination of Robots , 2006, SIAM J. Control. Optim..

[29]  Victor Chepoi,et al.  Graphs of Some CAT(0) Complexes , 2000, Adv. Appl. Math..