Ionic dipolar switching hinders charge collection in perovskite solar cells with normal and inverted hysteresis

[1]  Yang Yang,et al.  2D perovskite stabilized phase-pure formamidinium perovskite solar cells , 2018, Nature Communications.

[2]  C. Brabec,et al.  Switching Off Hysteresis in Perovskite Solar Cells by Fine‐Tuning Energy Levels of Extraction Layers , 2018 .

[3]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[4]  C. Brabec,et al.  Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells , 2018 .

[5]  J. Bisquert,et al.  Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment , 2018 .

[6]  Germà Garcia-Belmonte,et al.  Selective growth of layered perovskites for stable and efficient photovoltaics , 2018 .

[7]  J. Bisquert,et al.  Analysis of the Influence of Selective Contact Heterojunctions on the Performance of Perovskite Solar Cells , 2018 .

[8]  Anders Hagfeldt,et al.  Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells , 2018 .

[9]  Do Capacitance Measurements Reveal Light-Induced Bulk Dielectric Changes in Photovoltaic Perovskites? , 2017 .

[10]  Juan Bisquert,et al.  Tunable hysteresis effect for perovskite solar cells , 2017 .

[11]  G. Garcia‐Belmonte,et al.  Perovskite Solar Cells: A brief Introduction and some Remarks , 2017 .

[12]  X. Wen,et al.  Inverted Hysteresis in CH3NH3PbI3 Solar Cells: Role of Stoichiometry and Band Alignment. , 2017, The journal of physical chemistry letters.

[13]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[14]  J. Bisquert,et al.  Effects of Ion Distributions on Charge Collection in Perovskite Solar Cells , 2017 .

[15]  G. A. Nemnes,et al.  Normal and Inverted Hysteresis in Perovskite Solar Cells , 2017, 1704.03300.

[16]  F. Fabregat‐Santiago,et al.  Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[17]  L. Etgar,et al.  High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells , 2017 .

[18]  Rebecca A. Belisle,et al.  Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths , 2017 .

[19]  Ioana Pintilie,et al.  Dynamic electrical behavior of halide perovskite based solar cells , 2016, 1606.00335.

[20]  L. Etgar,et al.  Influence of Schottky contact on the C-V and J-V characteristics of HTM-free perovskite solar cells , 2017 .

[21]  Michael Saliba,et al.  Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination , 2016 .

[22]  L. Kronik,et al.  Optical phonons in methylammonium lead halide perovskites and implications for charge transport , 2016, 1607.08541.

[23]  Noncapacitive Hysteresis in Perovskite Solar Cells at Room Temperature , 2016 .

[24]  Jenny Nelson,et al.  Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis , 2016, Nature communications.

[25]  Juan Bisquert,et al.  Co3O4 Based All-Oxide PV: A Numerical Simulation Analyzed Combinatorial Material Science Study , 2016 .

[26]  T. Peltola,et al.  Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? , 2016 .

[27]  R. Holmes,et al.  Temperature‐Dependent Bias Poling and Hysteresis in Planar Organo‐Metal Halide Perovskite Photovoltaic Cells , 2016 .

[28]  G. Garcia‐Belmonte,et al.  Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites , 2016 .

[29]  J. Bisquert,et al.  Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[30]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[31]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[32]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[33]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[34]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[35]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[36]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[37]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[38]  M. Burgelman,et al.  Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. , 1997 .

[39]  Ishihara,et al.  Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. , 1995, Physical review. B, Condensed matter.

[40]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .