On-Line Location Prediction Exploiting Spatial and Velocity Context

We treat the problem of movement prediction as a classification task. We assume the existence of a (gradually populated and/or trained) knowledge base and try to compare the movement pattern of a certain object with stored information in order to predict its future location. We introduce a novel distance metric function based on weighted spatial and velocity context used for location prediction. The proposed distance metric is compared with other distance metrics in the literature on real traffic data and reveals its superiority.

[1]  Sung-Ju Lee,et al.  Mobility prediction and routing in ad hoc wireless networks , 2001, Int. J. Netw. Manag..

[2]  Stathes Hadjiefthymiades,et al.  An Adaptive Machine Learning Algorithm for Location Prediction , 2011, Int. J. Wirel. Inf. Networks.

[3]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC.

[4]  Thad Starner,et al.  Learning Significant Locations and Predicting User Movement with GPS , 2002, Proceedings. Sixth International Symposium on Wearable Computers,.

[5]  Dimitrios Gunopulos,et al.  Elastic Translation Invariant Matching of Trajectories , 2005, Machine Learning.

[6]  Stephen Grossberg,et al.  Adaptive Resonance Theory , 2010, Encyclopedia of Machine Learning.

[7]  Thomas L. Martin,et al.  Predicting future locations using prediction-by-partial-match , 2008, MELT '08.

[8]  Injong Rhee,et al.  On the levy-walk nature of human mobility , 2011, TNET.

[9]  Christoph Hermes,et al.  Long-term vehicle motion prediction , 2009, 2009 IEEE Intelligent Vehicles Symposium.

[10]  Christian S. Jensen,et al.  Path prediction and predictive range querying in road network databases , 2010, The VLDB Journal.

[11]  Sherif Akoush,et al.  Movement Prediction Using Bayesian Learning for Neural Networks , 2007, 2007 Second International Conference on Systems and Networks Communications (ICSNC 2007).

[12]  Qing Liu,et al.  A Hybrid Prediction Model for Moving Objects , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[13]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[14]  Ahmed Karmouch,et al.  A mobility prediction architecture based on contextual knowledge and spatial conceptual maps , 2005, IEEE Transactions on Mobile Computing.

[15]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[16]  Stathes Hadjiefthymiades,et al.  Path Prediction through Data Mining , 2007, IEEE International Conference on Pervasive Services.

[17]  Carsten Griwodz,et al.  Mobile video streaming using location-based network prediction and transparent handover , 2011, NOSSDAV.

[18]  Jennifer C. Hou,et al.  Modeling steady-state and transient behaviors of user mobility: formulation, analysis, and application , 2006, MobiHoc '06.

[19]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[20]  Nabanita Das,et al.  Mobile User Tracking Using A Hybrid Neural Network , 2005, Wirel. Networks.

[21]  Stathes Hadjiefthymiades,et al.  Proxies + Path Prediction: Improving Web Service Provision in Wireless–Mobile Communications , 2003, Mob. Networks Appl..

[22]  Myungchul Kim,et al.  Behavior-based mobility prediction for seamless handoffs in mobile wireless networks , 2011, Wirel. Networks.

[23]  Injong Rhee,et al.  CRAWDAD dataset ncsu/mobilitymodels (v.2009-07-23) , 2009 .

[24]  Dimitrios Gunopulos,et al.  Time-series similarity problems and well-separated geometric sets , 1997, SCG '97.

[25]  Kang G. Shin,et al.  Predictive and adaptive bandwidth reservation for hand-offs in QoS-sensitive cellular networks , 1998, SIGCOMM '98.

[26]  Stathes Hadjiefthymiades,et al.  Location-Based Network Resource Management , 2006 .

[27]  Matthias Grossglauser,et al.  CRAWDAD dataset epfl/mobility (v.2009-02-24) , 2009 .

[28]  Sung-Bae Cho,et al.  Predicting User's Movement with a Combination of Self-Organizing Map and Markov Model , 2006, ICANN.

[29]  J. M. Holtzman,et al.  A model for analyzing handoff algorithms (cellular radio) , 1993 .

[30]  Matthias Grossglauser,et al.  A parsimonious model of mobile partitioned networks with clustering , 2009, 2009 First International Communication Systems and Networks and Workshops.

[31]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[32]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[33]  Markus Hahn,et al.  3D Action Recognition and Long-Term Prediction of Human Motion , 2008, ICVS.

[34]  Anthony Stefanidis,et al.  3D trajectory matching by pose normalization , 2005, GIS '05.

[35]  S. Grossberg Adaptive Resonance Theory , 2006 .

[36]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[37]  Leonidas J. Guibas,et al.  Partial matching of planar polylines under similarity transformations , 1997, SODA '97.