Experimental Rotations of a Pendulum on Water Waves

The rotations of a parametric pendulum fitted onto a suitable floating support and forced to move vertically under the action of water waves have been studied on the basis of a dedicated wave flume laboratory experiment. An extended experimental campaign has been carried out with the aim of providing insight into the mechanics of the pendulum’s response to the wave forcing and data useful as a benchmark for available theories. A large number of time histories of the pendulum’s angular position have been collected. Rotations have been detected for different values of the frequency and of the amplitude of the excitation, showing the robustness in parameter space, and for different initial conditions, showing the robustness in phase space. This experiment, suggested by the recently developed concept of extracting energy from sea waves, constitutes preliminary experimental proof of that concept’s practical feasibility.

[1]  Marian Wiercigroch,et al.  Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum , 2006 .

[2]  Ekaterina Pavlovskaia,et al.  Rotating solutions and stability of parametric pendulum by perturbation method , 2008 .

[3]  A. Zubrzycki,et al.  The Global bifurcations that lead to Transient tumbling Chaos in a Parametrically Driven Pendulum , 2000, Int. J. Bifurc. Chaos.

[4]  Marcelo A. Savi,et al.  Chaos and transient chaos in an experimental nonlinear pendulum , 2006 .

[5]  Philip V. Bayly,et al.  Bifurcations in the Mean Angle of a Horizontally Shaken Pendulum: Analysis and Experiment , 1998 .

[6]  Mitsuaki Ishitobi,et al.  Experimental Study of Chaos in a Driven Triple Pendulum , 1999 .

[7]  Steven R. Bishop,et al.  Rotating solutions of the parametrically excited pendulum , 2003 .

[8]  Stefano Lenci,et al.  Competing Dynamic Solutions in a Parametrically Excited Pendulum: Attractor Robustness and Basin Integrity , 2007 .

[9]  Z. J. Yang,et al.  Experimental study of chaos in a driven pendulum , 1987 .

[10]  Marian Wiercigroch,et al.  Transient tumbling chaos and damping identification for parametric pendulum , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Matthew P. Cartmell,et al.  Rotating orbits of a parametrically-excited pendulum , 2005 .

[12]  Using a MEMS pendulum to measure the gravity gradient in orbit: a new concept for a miniaturized Earth sensor , 2009 .

[13]  Claude-Henri Lamarque,et al.  Numerical and Experimental Study of Regular and Chaotic Motion of Triple Physical Pendulum , 2008, Int. J. Bifurc. Chaos.

[14]  Alan G. Haddow,et al.  Centrifugal Pendulum Vibration Absorbers: An Experimental and Theoretical Investigation , 2003 .

[15]  Ekaterina Pavlovskaia,et al.  Dynamic interactions between parametric pendulum and electro‐dynamical shaker , 2007 .

[16]  S. M. Tan,et al.  Double pendulum: An experiment in chaos , 1993 .

[17]  Stefano Lenci,et al.  Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective , 2011 .

[18]  George Biddell Airy,et al.  Account of pendulum experiments undertaken in the Harton Colliery for the purpose of determining the mean density of the Earth , 1857, Proceedings of the Royal Society of London.

[19]  Eugene I. Butikov THE RIGID PENDULUM : AN ANTIQUE BUT EVERGREEN PHYSICAL MODEL , 1999 .

[20]  Brian P. Mann,et al.  Symmetry breaking bifurcations of a parametrically excited pendulum , 2006 .

[21]  B. Koch,et al.  Subharmonic and homoclinic bifurcations in a parametrically forced pendulum , 1985 .