Main Determinants of Presynaptic Ca2+ Dynamics at Individual Mossy Fiber–CA3 Pyramidal Cell Synapses

Synaptic transmission between hippocampal mossy fibers (MFs) and CA3 pyramidal cells exhibits remarkable use-dependent plasticity. The underlying presynaptic mechanisms, however, remain poorly understood. Here, we have used fluorescent Ca2+ indicators Fluo-4, Fluo-5F, and Oregon Green BAPTA-1 to investigate Ca2+ dynamics in individual giant MF boutons (MFBs) in area CA3 traced from the somata of granule cells held in whole-cell mode. In an individual MFB, a single action potential induces a brief peak of free Ca2+ (estimated in the range of 8–9 μm) followed by an elevation to ∼320 nm, which slowly decays to its resting level of ∼110 nm. Changes in the somatic membrane potential influence presynaptic Ca2+ entry at proximal MFBs in the hilus. This influence decays with distance along the axon, with a length constant of ∼200 μm. In giant MFBs in CA3, progressive saturation of endogenous Ca2+ buffers during repetitive spiking amplifies rapid Ca2+ peaks and the residual Ca2+ severalfold, suggesting a causal link to synaptic facilitation. We find that internal Ca2+ stores contribute to maintaining the low resting Ca2+ providing ∼22% of the buffering/extrusion capacity of giant MFBs. Rapid Ca2+ release from stores represents up to 20% of the presynaptic Ca2+ transient evoked by a brief train of action potentials. The results identify the main components of presynaptic Ca2+ dynamics at this important cortical synapse.

[1]  A. Periasamy Methods in Cellular Imaging , 2001, Methods in Physiology.

[2]  D. Johnston,et al.  Calcium signaling at single mossy fiber presynaptic terminals in the rat hippocampus. , 2002, Journal of neurophysiology.

[3]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[4]  David Lodge,et al.  A Critical Role of a Facilitatory Presynaptic Kainate Receptor in Mossy Fiber LTP , 2001, Neuron.

[5]  R. Nicoll,et al.  Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses , 2000, Neuron.

[6]  Jörg R P Geiger,et al.  Timing and Efficacy of Ca2+ Channel Activation in Hippocampal Mossy Fiber Boutons , 2002, The Journal of Neuroscience.

[7]  D. Pinkel,et al.  Supporting Online Material Materials and Methods Figs. S1 and S2 Tables S1 and S2 References Combined Analog and Action Potential Coding in Hippocampal Mossy Fibers , 2022 .

[8]  Stephen J Redman,et al.  Calcium Dynamics, Buffering, and Buffer Saturation in the Boutons of Dentate Granule-Cell Axons in the Hilus , 2003, The Journal of Neuroscience.

[9]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[10]  Maria Blatow,et al.  Ca2+ Buffer Saturation Underlies Paired Pulse Facilitation in Calbindin-D28k-Containing Terminals , 2003, Neuron.

[11]  T. Manabe,et al.  Kainate Receptor-Dependent Short-Term Plasticity of Presynaptic Ca2+ Influx at the Hippocampal Mossy Fiber Synapses , 2002, The Journal of Neuroscience.

[12]  D. Rusakov,et al.  Modulation of Presynaptic Ca2+ Entry by AMPA Receptors at Individual GABAergic Synapses in the Cerebellum , 2005, The Journal of Neuroscience.

[13]  A. Verkhratsky,et al.  Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+‐induced Ca2+ release triggered by physiological Ca2+ entry , 2002 .

[14]  Wade G Regehr,et al.  Assessing the Role of Calcium-Induced Calcium Release in Short-Term Presynaptic Plasticity at Excitatory Central Synapses , 2002, The Journal of Neuroscience.

[15]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[16]  K. Tóth,et al.  Differential Mechanisms of Transmission at Three Types of Mossy Fiber Synapse , 2000, The Journal of Neuroscience.

[17]  D Holcman,et al.  Calcium dynamics in dendritic spines, modeling and experiments. , 2005, Cell calcium.

[18]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[19]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[20]  D. Kullmann,et al.  NR2B-Containing Receptors Mediate Cross Talk among Hippocampal Synapses , 2004, The Journal of Neuroscience.

[21]  K M Harris,et al.  Three‐dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus , 1992, The Journal of comparative neurology.

[22]  L. Trussell,et al.  Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse , 2001, Nature.

[23]  D. Kullmann,et al.  Heterogeneity and specificity of presynaptic Ca2+ current modulation by mGluRs at individual hippocampal synapses. , 2004, Cerebral cortex.

[24]  W. Webb,et al.  In vivo Diffusion Measurements Using Multiphoton Excitation Fluorescence Photobleaching Recovery and Fluorescence Correlation Spectroscopy , 2001 .

[25]  Nobuaki Tamamaki,et al.  Crossing fiber arrays in the rat hippocampus as demonstrated by three‐dimensional reconstruction , 1991, The Journal of comparative neurology.

[26]  A. Tepikin,et al.  Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen , 1998, The EMBO journal.

[27]  M. Naraghi,et al.  T-jump study of calcium binding kinetics of calcium chelators. , 1997, Cell calcium.

[28]  J. Borst,et al.  Short-term plasticity at the calyx of held , 2002, Nature Reviews Neuroscience.

[29]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[30]  E. Neher,et al.  Vesicle pools and short-term synaptic depression: lessons from a large synapse , 2002, Trends in Neurosciences.

[31]  Dirk Dietrich,et al.  Endogenous Ca2+ Buffer Concentration and Ca2+ Microdomains in Hippocampal Neurons , 2005, The Journal of Neuroscience.

[32]  M. R. Sepúlveda,et al.  Calcium pumps in the central nervous system , 2005, Brain Research Reviews.

[33]  C. McBain,et al.  Interneuron Diversity series: Containing the detonation – feedforward inhibition in the CA3 hippocampus , 2003, Trends in Neurosciences.

[34]  R. Nicoll,et al.  Comparison of two forms of long-term potentiation in single hippocampal neurons. , 1990, Science.

[35]  W. Griffith,et al.  Voltage-clamp analysis of posttetanic potentiation of the mossy fiber to CA3 synapse in hippocampus. , 1990, Journal of neurophysiology.

[36]  W G Regehr,et al.  Optical measurement of presynaptic calcium currents. , 1998, Biophysical journal.

[37]  I. Módy,et al.  Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+) , 2000, Biophysical journal.

[38]  D. A. Rusakov,et al.  Extracellular Ca2+ Depletion Contributes to Fast Activity-Dependent Modulation of Synaptic Transmission in the Brain , 2003, Neuron.

[39]  K. Roche,et al.  mGluR7 Is a Metaplastic Switch Controlling Bidirectional Plasticity of Feedforward Inhibition , 2005, Neuron.

[40]  W M Cowan,et al.  Quantitative, three‐dimensional analysis of granule cell dendrites in the rat dentate gyrus , 1990, The Journal of comparative neurology.

[41]  D. Schmitz,et al.  Assessing the Role of GLUK5 and GLUK6 at Hippocampal Mossy Fiber Synapses , 2004, The Journal of Neuroscience.

[42]  Alexei Verkhratsky,et al.  Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. , 2005, Physiological reviews.

[43]  Gautam B. Awatramani,et al.  Modulation of Transmitter Release by Presynaptic Resting Potential and Background Calcium Levels , 2005, Neuron.

[44]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[45]  I. Johnson,et al.  Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. , 2000, Cell calcium.

[46]  A. Parekh Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. , 2003, The Journal of physiology.

[47]  R. Nicoll,et al.  Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses , 2001, Science.

[48]  B. Sakmann,et al.  Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. , 2003, The Journal of physiology.

[49]  S. Heinemann,et al.  Kainate Receptors Are Involved in Short- and Long-Term Plasticity at Mossy Fiber Synapses in the Hippocampus , 2001, Neuron.

[50]  A. Macdermott,et al.  Presynaptic ionotropic receptors and control of transmitter release , 2004, Nature Reviews Neuroscience.

[51]  Peter Jonas,et al.  Presynaptic Action Potential Amplification by Voltage-Gated Na+ Channels in Hippocampal Mossy Fiber Boutons , 2005, Neuron.

[52]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[53]  P. Jonas,et al.  Dynamic Control of Presynaptic Ca2+ Inflow by Fast-Inactivating K+ Channels in Hippocampal Mossy Fiber Boutons , 2000, Neuron.

[54]  R. Zucker,et al.  Facilitation through buffer saturation: constraints on endogenous buffering properties. , 2004, Biophysical journal.

[55]  Katsunori Kobayashi,et al.  Developmental Decrease in Synaptic Facilitation at the Mouse Hippocampal Mossy Fibre Synapse , 2003, The Journal of physiology.

[56]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[57]  D W Tank,et al.  The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[59]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[60]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[61]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[62]  G. Collingridge,et al.  A Role for Ca2+ Stores in Kainate Receptor-Dependent Synaptic Facilitation and LTP at Mossy Fiber Synapses in the Hippocampus , 2003, Neuron.

[63]  D. Kullmann,et al.  GABAA Receptors at Hippocampal Mossy Fibers , 2003, Neuron.

[64]  J. Enghild,et al.  Calbindin D28k Exhibits Properties Characteristic of a Ca2+ Sensor* , 2002, The Journal of Biological Chemistry.

[65]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[66]  D. Batens,et al.  Theory and Experiment , 1988 .