Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n‐Type Bismuth‐Telluride‐Based Solid Solutions

Microstructure manipulation plays an important role in enhancing physical and mechanical properties of materials. Here a high figure of merit zT of 1.2 at 357 K for n-type bismuth-telluride-based thermoelectric (TE) materials through directly hot deforming the commercial zone melted (ZM) ingots is reported. The high TE performance is attributed to a synergistic combination of reduced lattice thermal conductivity and maintained high power factor. The lattice thermal conductivity is substantially decreased by broad wavelength phonon scattering via tuning multiscale microstructures, which includes microscale grain size reduction and texture loss, nanoscale distorted regions, and atomic scale lattice distotions and point defects. The high power factor of ZM ingots is maintained by the offset between weak donor-like effect and texture loss during the hot deformation. The resulted high zT highlights the role of multiscale microstructures in improving Bi2Te3-based materials and demonstrates the effective strategy in enhancing TE properties.

[1]  Tiejun Zhu,et al.  Shifting up the optimum figure of merit of p -type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction , 2014 .

[2]  Xinbing Zhao,et al.  Ioffe–Regel limit and lattice thermal conductivity reduction of high performance (AgSbTe2)15(GeTe)85 thermoelectric materials , 2014 .

[3]  Tiejun Zhu,et al.  Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure , 2008 .

[4]  G. J. Snyder,et al.  Low Electron Scattering Potentials in High Performance Mg2Si0.45Sn0.55 Based Thermoelectric Solid Solutions with Band Convergence , 2013 .

[5]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[6]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[7]  G. Gottstein,et al.  Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 , 2001 .

[8]  Cristina H Amon,et al.  Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance , 2013, Nature Communications.

[9]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[10]  Xinbing Zhao,et al.  Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials , 2013 .

[11]  Tiejun Zhu,et al.  Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials , 2014 .

[12]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[13]  Q. Ramasse,et al.  Structure of the (0001) basal twin boundary in Bi2Te3 , 2010 .

[14]  Tiejun Zhu,et al.  Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties , 2010 .

[15]  Xinbing Zhao,et al.  Lattice thermal conductivity and spectral phonon scattering in FeVSb-based half-Heusler compounds , 2013 .

[16]  F. D. Rosi,et al.  Compound tellurides and their alloys for peltier cooling—A review , 1972 .

[17]  D. Maier Strain-field domain structure in Bi2Te3 thermoelectric materials , 2002 .

[18]  S. Chowdhury,et al.  Texture evolution during recrystallization in a boron-doped Ni76Al24 alloy , 2000 .

[19]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[20]  Xinbing Zhao,et al.  Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects , 2012 .

[21]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[22]  Haijun Wu,et al.  Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides , 2013 .

[23]  Han Li,et al.  Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation , 2012 .

[24]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[25]  Dawei Liu,et al.  BiSbTe‐Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties , 2013 .

[26]  M. Dresselhaus,et al.  Structure study of bulk nanograined thermoelectric bismuth antimony telluride. , 2009, Nano letters.

[27]  H. Goldsmid,et al.  Anisotropy of the Electrical Conductivity in Bismuth Telluride , 1961 .

[28]  Xing Zhang,et al.  Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites , 2005 .

[29]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[30]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[31]  Xinbing Zhao,et al.  Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement , 2012 .

[32]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[33]  K. Termentzidis,et al.  Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices , 2013 .

[34]  Shanyu Wang,et al.  High performance n-type (Bi,Sb)2(Te,Se)3 for low temperature thermoelectric generator , 2010 .

[35]  J. Horák,et al.  Point defects in the mixed chalcogenides Bi2 Te3-xXx(X = S, Se) , 1994 .

[36]  Tiejun Zhu,et al.  Enhanced figure of merit in antimony telluride thermoelectric materials by In–Ag co-alloying for mid-temperature power generation , 2015 .

[37]  N. V. Kolomoets,et al.  Thermoelectric properties of the hot-pressed (Bi,Sb) 2 (Te,Se) 3 alloys , 2000 .

[38]  Weishu Liu,et al.  Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering , 2008 .

[39]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[40]  J. Navrátil,et al.  Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing , 1996 .

[41]  Haijun Wu,et al.  Strain glass transition in a multifunctional β-type Ti alloy , 2014, Scientific Reports.

[42]  U. Birkholz Untersuchung der intermetallischen Verbindung Bi2Te3 sowie der festen Lösungen Bi2-xSbxTe3 und Bi2Te3-xSex hinsichtlich ihrer Eignung als Material für Halbleiter-Thermoelemente , 1958 .

[43]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[44]  Jie Shen,et al.  The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys , 2011 .

[45]  Vinayak P. Dravid,et al.  Phonon Scattering and Thermal Conductivity in p‐Type Nanostructured PbTe‐BaTe Bulk Thermoelectric Materials , 2012 .

[46]  Qingjie Zhang,et al.  Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi,Sb)_2Te_3 thermoelectric materials , 2011 .

[47]  Haijun Wu,et al.  Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics , 2014 .

[48]  H. Scherrer,et al.  Transport properties of n-type Bi2(Te1−xSex)3 single crystal solid solutions (x ⩽ 0.05) , 1995 .