Automated Detection of Hard Exudates in Fundus Images Using Improved OTSU Thresholding and SVM

[1]  T. Williamson,et al.  Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. , 1996, The British journal of ophthalmology.

[2]  S. Wild,et al.  Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. , 2004, Diabetes care.

[3]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[4]  P. Sharp,et al.  Automated detection and quantification of retinal exudates , 1993, Graefe's Archive for Clinical and Experimental Ophthalmology.

[5]  D L DeMets,et al.  The Wisconsin Epidemiologic Study of Diabetic Retinopathy. VII. Diabetic nonproliferative retinal lesions. , 1987, Ophthalmology.

[6]  B. van Ginneken,et al.  Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. , 2007, Investigative ophthalmology & visual science.

[7]  Yu Zhang,et al.  Automated defect recognition of C-SAM images in IC packaging using Support Vector Machines , 2005 .

[8]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[9]  Pascale Massin,et al.  A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina , 2002, IEEE Transactions on Medical Imaging.

[10]  Roberto Hornero,et al.  A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. , 2008, Medical engineering & physics.