Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems

This paper describes a restarted Lanczos algorithm that particularly suitable for implementation on distributed machines. The only communication operation is requires outside of the matrix-vector multiplication is a global sum. For most large eigenvalue problems, the global sum operation takes a small fraction of the total execution time. The majority of the computer is spent in the matrix-vector multiplication. Efficient parallel matrix-vector multiplication routines can be found in many parallel sparse matrix packages such as AZTEC [9], BLOCK-SOLVE [10], PETSc [3], P_SPARSLIB. For this reason, our main emphasis in this paper is to demonstrate the correctness and the effectiveness of the new algorithm.

[1]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[2]  C. Paige Computational variants of the Lanczos method for the eigenproblem , 1972 .

[3]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[4]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[5]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[6]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[7]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[8]  H. Simon The lanczos algorithm for solving symmetric linear systems , 1982 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  H. Simon Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .

[11]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[12]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[13]  Editors , 1986, Brain Research Bulletin.

[14]  R. Morgan,et al.  Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .

[15]  Gene H. Golub,et al.  Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..

[16]  Ernest R. Davidson,et al.  Super-matrix methods , 1989 .

[17]  J. H. van Lenthe,et al.  A space‐saving modification of Davidson's eigenvector algorithm , 1990 .

[18]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[19]  E. Davidson,et al.  Improved Algorithms for the Lowest Few Eigenvalues and Associated Eigenvectors of Large Matrices , 1992 .

[20]  M. Sadkane A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices , 1993 .

[21]  Lin-wang Wang,et al.  Large scale electronic structure calculations using the Lanczos method , 1994 .

[22]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[23]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[24]  J. David Brown,et al.  Proceedings of the Cornelius Lanczos International Centenary Conference , 1994 .

[25]  A. Stathopoulos,et al.  A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix , 1994 .

[26]  O. Marques BLZPACK: Description and User's Guide , 1995 .

[27]  John N. Shadid,et al.  Aztec user`s guide. Version 1 , 1995 .

[28]  B. Parlett Do We Fully Understand the Symmetric Lanczos Algorithm Yet , 1995 .

[29]  R. Lehoucq Analysis and implementation of an implicitly restarted Arnoldi iteration , 1996 .

[30]  D. Calvetti,et al.  Iterative methods for the computation of a few eigenvalues of a large symmetric matrix , 1996 .

[31]  Y. Saad,et al.  Thick restarting of the Davidson method: An extension to implicit restarting , 1996 .

[32]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[33]  F. Webster,et al.  Projective Block Lanczos Algorithm for Dense, Hermitian Eigensystems , 1996 .

[34]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[35]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[36]  Kesheng Wu,et al.  Preconditioned techniques for large eigenvalue problems , 1997 .

[37]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[38]  Kesheng Wu,et al.  Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..