Rainfall Estimation From Ground Radar and TRMM Precipitation Radar Using Hybrid Deep Neural Networks

[1]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[2]  V. Chandrasekar,et al.  Operational feasibility of neural-network-based radar rainfall estimation , 2005, IEEE Geoscience and Remote Sensing Letters.

[3]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[4]  Katsuhiko Nishikawa,et al.  Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  V. Chandrasekar,et al.  Methodology for Aligning and Comparing Spaceborne Radar and Ground-Based Radar Observations , 2003 .

[6]  Yang Hong,et al.  Toward a Framework for Systematic Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground Radar–Based National Mosaic QPE , 2012 .

[7]  V. Chandrasekar,et al.  Development of a neural network based algorithm for rainfall estimation from radar observations , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  Elizabeth A. Barnes,et al.  Primary Modes of Global Drop Size Distributions , 2018 .

[9]  V. Chandrasekar,et al.  A machine learning model for radar rainfall estimation based on gauge observations , 2017, 2017 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[10]  V. Chandrasekar,et al.  High Resolution Radar Quantitative Precipitation Estimation in the San Francisco Bay Area: Rainfall Monitoring for the Urban Environment , 2018 .

[11]  David B. Wolff,et al.  Ground Validation for the Tropical Rainfall Measuring Mission (TRMM) , 2005 .

[12]  Matthias Steiner,et al.  Reflectivity, Rain Rate, and Kinetic Energy Flux Relationships Based on Raindrop Spectra , 2000 .

[13]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[14]  Y. Hong,et al.  Research Framework to Bridge from the Global Precipitation Measurement Mission Core Satellite to the Constellation Sensors Using Ground‐Radar‐Based National Mosaic QPE , 2014 .

[15]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[16]  Yang Hong,et al.  Probabilistic precipitation rate estimates with ground‐based radar networks , 2015 .

[17]  R. Meneghini,et al.  Validation of TRMM Precipitation Radar through Comparison of Its Multiyear Measurements with Ground-Based Radar , 2009 .

[18]  Yabin Gou,et al.  Radar-derived quantitative precipitation estimation in complex terrain over the eastern Tibetan Plateau , 2018 .

[19]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar , 2001 .

[20]  V. Chandrasekar,et al.  An Improved Dual-Polarization Radar Rainfall Algorithm (DROPS2.0): Application in NASA IFloodS Field Campaign , 2017 .

[21]  Isabella Morlini,et al.  Artificial neural network estimation of rainfall intensity from radar observations , 2000 .

[22]  Reinhard Teschl,et al.  Improving weather radar estimates of rainfall using feed-forward neural networks , 2007, Neural Networks.

[23]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[24]  Haonan Chen,et al.  An Inverse Model for Raindrop Size Distribution Retrieval with Polarimetric Variables , 2018, Remote. Sens..

[25]  M. Kitchen,et al.  Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation , 1994 .

[26]  Gang Xu,et al.  An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations , 2001 .

[27]  Mathew R. Schwaller,et al.  A Ground Validation Network for the Global Precipitation Measurement Mission , 2011 .