Error Analysis of Coarse-Graining for Stochastic Lattice Dynamics

The coarse-grained Monte Carlo (CGMC) algorithm was originally proposed in the series of works [M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, J. Comput. Phys., 186 (2003), pp. 250-278; M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 782-787; M. A. Katsoulakis and D. G. Vlachos, J. Chem. Phys., 119 (2003), pp. 9412-9427]. In this paper we further investigate the approximation properties of the coarse-graining procedure and provide both analytical and numerical evidence that the hierarchy of the coarse models is built in a systematic way that allows for error control in both transient and long-time simulations. We demonstrate that the numerical accuracy of the CGMC algorithm as an approximation of stochastic lattice spin flip dynamics is of order two in terms of the coarse-graining ratio and that the natural small parameter is the coarse-graining ratio over the range of particle/particle interactions. The error estimate is shown to hold in the weak convergence sense. We employ the derived analytical results to guide CGMC algorithms and demonstrate a CPU speed-up in demanding computational regimes that involve nucleation, phase transitions, and metastability.

[1]  R. Tempone,et al.  Adaptive weak approximation of stochastic differential equations , 2001 .

[2]  Markos A. Katsoulakis,et al.  COARSE-GRAINING SCHEMES AND A POSTERIORI ERROR ESTIMATES FOR STOCHASTIC LATTICE SYSTEMS , 2006, math/0608007.

[3]  George Stephanopoulos,et al.  Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermodynamic properties , 2003 .

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[6]  Denis Talay,et al.  Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients , 1994 .

[7]  Achi Brandt,et al.  Multi-level approaches to discrete-state and stochastic problems , 1986 .

[8]  A J Chorin,et al.  Optimal prediction of underresolved dynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[10]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[11]  Achi Brandt,et al.  Multilevel Monte Carlo methods for studying large scale phenomena in fluids , 2003 .

[12]  Steffen Renisch,et al.  Dynamics of adatom motion under the influence of mutual interactions: O/Ru(0001) , 1999 .

[13]  Goodman,et al.  Multigrid Monte Carlo method for lattice field theories. , 1986, Physical review letters.

[14]  Markos A. Katsoulakis,et al.  Information Loss in Coarse-Graining of Stochastic Particle Dynamics , 2006 .

[15]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[16]  R. O'handley Modern magnetic materials , 1999 .

[17]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[18]  Markos A. Katsoulakis,et al.  Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles , 2003 .

[19]  T. Hou,et al.  A MULTISCALE FINITE ELEMENT METHOD FOR PDES WITH OSCILLATORY COEFFICIENTS , 1997 .

[20]  A. Brandt Multigrid methods in lattice field computations , 1992, hep-lat/9204014.

[21]  R. Aris,et al.  The effects of phase transitions, surface diffusion, and defects on surface catalyzed reactions: Fluctuations and oscillations , 1990 .

[22]  Enza Orlandi,et al.  Glauber evolution with Kac potentials: III. Spinodal decomposition , 1996 .

[23]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  N. Goldenfeld,et al.  Renormalization group and perfect operators for stochastic differential equations. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  D. Ron,et al.  Renormalization Multigrid (RMG): Statistically Optimal Renormalization Group Flow and Coarse-to-Fine Monte Carlo Acceleration , 2001 .

[26]  P. Deuflhard,et al.  A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo , 1999 .

[27]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[28]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[29]  Thomas Y. Hou,et al.  Multiscale Modeling and Computation of Incompressible Flow , 2002 .

[30]  L. Golubović Nonequlibrium Statistical Mechanics of An Ensemble of Vesicles , 1995 .

[31]  Andrew J. Majda,et al.  Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems , 2003 .

[32]  Markos A. Katsoulakis,et al.  Stochastic hydrodynamical limits of particle systems , 2006 .

[33]  Andrew J. Majda,et al.  Multiscale couplings in prototype hybrid deterministic/stochastic systems: Part II, Stochastic closures , 2004 .

[34]  A. Majda,et al.  Coarse-grained stochastic processes for microscopic lattice systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.