A p53-JAK-STAT connection involved in myeloproliferative neoplasm pathogenesis and progression to secondary acute myeloid leukemia.

[1]  J. Weinstein,et al.  Erratum: Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas (Cell Reports (2019) 28(5) (1370–1384.e5), (S221112471930885X), (10.1016/j.celrep.2019.07.001)) , 2019 .

[2]  Donna Neuberg,et al.  A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies , 2019, Science.

[3]  Francisco J. Sánchez-Rivera,et al.  A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1. , 2019, Cancer discovery.

[4]  S. Mustjoki,et al.  Twins with different personalities: STAT5B—but not STAT5A—has a key role in BCR/ABL-induced leukemia , 2019, Leukemia.

[5]  A. Jemal,et al.  Cancer statistics, 2019 , 2019, CA: a cancer journal for clinicians.

[6]  K. Vousden,et al.  p53-mediated adaptation to serine starvation is retained by a common tumour-derived mutant , 2018, Cancer & Metabolism.

[7]  Aviad Tsherniak,et al.  Mutational processes shape the landscape of TP53 mutations in human cancer , 2018, Nature Genetics.

[8]  T. Olson,et al.  Germline duplication of ATG2B and GSKIP genes is not required for the familial myeloid malignancy syndrome associated with the duplication of chromosome 14q32 , 2018, Leukemia.

[9]  F. Greten,et al.  Therapeutic Ablation of Gain-of-Function Mutant p53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. , 2018, Cancer cell.

[10]  K. Ballman,et al.  Somatic mutations precede acute myeloid leukemia years before diagnosis , 2018, Nature Medicine.

[11]  A. Gomes,et al.  p53 and glucose metabolism: an orchestra to be directed in cancer therapy. , 2018, Pharmacological research.

[12]  L. Attardi,et al.  Deciphering p53 signaling in tumor suppression. , 2018, Current opinion in cell biology.

[13]  H. Boswell,et al.  Genotoxic stresses promote clonal expansion of hematopoietic stem cells expressing mutant p53 , 2018, Leukemia.

[14]  G. Lozano,et al.  Mutant p53 partners in crime. , 2018 .

[15]  Š. Pospíšilová,et al.  Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status , 2017, Leukemia.

[16]  A. Quintás-Cardama,et al.  p53 pathway dysfunction in AML: beyond TP53 mutations , 2017, Oncotarget.

[17]  G. Ferbeyre,et al.  SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes , 2017, Aging.

[18]  W. Vainchenker,et al.  Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. , 2017, Blood.

[19]  D. Neuberg,et al.  Prognostic Mutations in Myelodysplastic Syndrome after Stem‐Cell Transplantation , 2017, The New England journal of medicine.

[20]  M. Kurokawa,et al.  Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera , 2017, Oncogene.

[21]  Ying Yang,et al.  Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction , 2016, Oncogene.

[22]  M. Minden,et al.  Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2 , 2016, Cell Death & Disease.

[23]  N. Schultz,et al.  Deletions linked to TP53 loss drive cancer through p53-independent mechanisms , 2016, Nature.

[24]  E. Vellenga,et al.  Constitutive NF-κB activation in AML: Causes and treatment strategies. , 2016, Critical reviews in oncology/hematology.

[25]  B. Göttgens,et al.  Cytokine‐induced megakaryocytic differentiation is regulated by genome‐wide loss of a uSTAT transcriptional program , 2015, The EMBO journal.

[26]  T. Pabst,et al.  Inactivation of the p53–KLF4–CEBPA Axis in Acute Myeloid Leukemia , 2015, Clinical Cancer Research.

[27]  F. Pasquier,et al.  Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies , 2015, Nature Genetics.

[28]  Cheryl H. Arrowsmith,et al.  Prevalent p53 mutants co-opt chromatin pathways to drive cancer growth , 2015, Nature.

[29]  B. Ko,et al.  TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution , 2015, Blood Cancer Journal.

[30]  Michael L Kaufman,et al.  Enrichment of Human Hematopoietic Stem/Progenitor Cells Facilitates Transduction for Stem Cell Gene Therapy , 2015, Stem cells.

[31]  Christopher A. Miller,et al.  The Role of TP53 Mutations in the Origin and Evolution of Therapy-Related AML , 2014, Nature.

[32]  S. Armstrong,et al.  Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms , 2014, Proceedings of the National Academy of Sciences.

[33]  Christian Beisel,et al.  Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. , 2014, Blood.

[34]  C. Pecquet,et al.  Persistent STAT5 activation in myeloid neoplasms recruits p53 into gene regulation , 2014, Oncogene.

[35]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[36]  S. Mustjoki,et al.  Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. , 2013, Blood.

[37]  W. Vainchenker,et al.  JAK/STAT signaling in hematological malignancies , 2013, Oncogene.

[38]  Benjamin L Ebert,et al.  Molecular pathophysiology of myelodysplastic syndromes. , 2013, Annual review of pathology.

[39]  Karen Blyth,et al.  Serine starvation induces stress and p53 dependent metabolic remodeling in cancer cells , 2012, Nature.

[40]  V. Pant,et al.  The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. , 2012, Blood.

[41]  A. Stukalov,et al.  Clinical significance of genetic aberrations in secondary acute myeloid leukemia , 2012, American journal of hematology.

[42]  Wei Gu,et al.  Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence , 2012, Cell.

[43]  I. Kubacka,et al.  Mutant p53 cooperates with ETS2 to promote etoposide resistance. , 2012, Genes & development.

[44]  E. Solary,et al.  JAK2V617F negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms , 2012, Oncogene.

[45]  S. Fröhling,et al.  TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. , 2012, Blood.

[46]  Joost Schymkowitz,et al.  Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. , 2011, Nature chemical biology.

[47]  M. Cazzola,et al.  p53 lesions in leukemic transformation. , 2011, The New England journal of medicine.

[48]  G. Wahl,et al.  Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures , 2010, Proceedings of the National Academy of Sciences.

[49]  D. Green,et al.  NF-κB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2 , 2010, Proceedings of the National Academy of Sciences.

[50]  C. Pecquet,et al.  miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. , 2010, Blood.

[51]  R. Kusec,et al.  Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. , 2010, Blood.

[52]  T. Ichisaka,et al.  Suppression of induced pluripotent stem cell generation by the p53–p21 pathway , 2009, Nature.

[53]  F. Girodon,et al.  AML transformation in 56 patients with Ph− MPD in two well defined populations , 2009, European journal of haematology.

[54]  Y. Liu,et al.  p53 regulates hematopoietic stem cell quiescence. , 2009, Cell stem cell.

[55]  R. Hills,et al.  TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis , 2009, Leukemia.

[56]  L. Wiesmüller,et al.  Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants , 2008, Nucleic acids research.

[57]  Stephen L. Abrams,et al.  Involvement of p53 and Raf/MEK/ERK pathways in hematopoietic drug resistance , 2008, Leukemia.

[58]  T. Yeatman,et al.  Regulation of MDMX Expression by Mitogenic Signaling , 2008, Molecular and Cellular Biology.

[59]  B. Johansson,et al.  Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia , 2008, Genes, chromosomes & cancer.

[60]  M. Olivier,et al.  Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database , 2007, Human mutation.

[61]  P. Pelicci,et al.  Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. , 2006, Cancer research.

[62]  Hua Yu,et al.  Role of Stat3 in Regulating p53 Expression and Function , 2005, Molecular and Cellular Biology.

[63]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[64]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[65]  V. Moucadel,et al.  Differential STAT5 Signaling by Ligand-dependent and Constitutively Active Cytokine Receptors* , 2005, Journal of Biological Chemistry.

[66]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[67]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[68]  S. Selvin,et al.  RAS mutation is associated with hyperdiploidy and parental characteristics in pediatric acute lymphoblastic leukemia , 2005, Leukemia.

[69]  R. Mesa,et al.  Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. , 2005, Blood.

[70]  Paola Fazi,et al.  Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. , 2005, The New England journal of medicine.

[71]  X. Shu,et al.  RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia , 2004, Leukemia.

[72]  R. Knight,et al.  STAT-1 Interacts with p53 to Enhance DNA Damage-induced Apoptosis* , 2004, Journal of Biological Chemistry.

[73]  G. E. Davis,et al.  A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis , 2001, Apoptosis.

[74]  S. Kato,et al.  Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Jichun Chen,et al.  Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. , 2003, Experimental hematology.

[76]  Pier Giuseppe Pelicci,et al.  Nucleophosmin regulates the stability and transcriptional activity of p53 , 2002, Nature Cell Biology.

[77]  F. McCormick,et al.  Opposing Effects of Ras on p53 Transcriptional Activation of mdm2 and Induction of p19ARF , 2000, Cell.

[78]  B. Groner,et al.  p53 suppresses cytokine induced, Stat5 mediated activation of transcription , 1998, Molecular and Cellular Endocrinology.

[79]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[80]  M. Vidal,et al.  Dominant-negative p53 mutations selected in yeast hit cancer hot spots. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. Levine,et al.  Gain of function mutations in p53 , 1993, Nature Genetics.

[82]  Arturo Pereira,et al.  Acute transformation in nonleukemic chronic myeloproliferative disorders: actuarial probability and main characteristics in a series of 218 patients. , 1991, Acta haematologica.

[83]  B. Vogelstein,et al.  p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. , 1990, Cancer research.

[84]  M. Bar‐eli,et al.  The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing. , 1990, Blood.

[85]  J. Minna,et al.  p53: a frequent target for genetic abnormalities in lung cancer. , 1989, Science.

[86]  A. Levine,et al.  The p53 proto-oncogene can act as a suppressor of transformation , 1989, Cell.

[87]  A. Levine,et al.  Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells , 1979, Cell.

[88]  D. Lane,et al.  T antigen is bound to a host protein in SY40-transformed cells , 1979, Nature.