Generalized Bent Functions - Some General Construction Methods and Related Necessary and Sufficient Conditions

In this article we present a broader theoretical framework useful in studying the properties of so-called generalized bent functions. We give the sufficient conditions (and in many cases also necessary) for generalized bent functions when these functions are represented as a linear combination of: generalized bent; Boolean bent; and a mixture of generalized bent and Boolean bent functions. These conditions are relatively easy to satisfy and by varying the variables that specify these linear combinations many different classes of generalized bent functions can be derived. In particular, based on these results, we provide some generic construction methods of these functions and demonstrate that some previous methods are just special cases of the results given in this article.

[1]  Natalia N. Tokareva,et al.  Generalizations of bent functions. A survey , 2011, IACR Cryptol. ePrint Arch..

[2]  Ying Zhao,et al.  On bent functions with some symmetric properties , 2006, Discret. Appl. Math..

[3]  Claude Carlet,et al.  Two New Classes of Bent Functions , 1994, EUROCRYPT.

[4]  G. Vetrovec DES , 2021, Encyclopedia of Systems and Control.

[5]  P. Vijay Kumar,et al.  Generalized Bent Functions and Their Properties , 1985, J. Comb. Theory, Ser. A.

[6]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[7]  Виктор Игоревич Солодовников,et al.  Бент-функции из конечной абелевой группы в конечную абелеву группу@@@Bent functions from a finite abelian group into a finite abelian group , 2002 .

[8]  Kai-Uwe Schmidt,et al.  Quaternary Constant-Amplitude Codes for Multicode CDMA , 2006, IEEE Transactions on Information Theory.

[9]  Brajesh Kumar Singh Secondary constructions on generalized bent functions , 2012, IACR Cryptol. ePrint Arch..

[10]  Brajesh Kumar Singh On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class , 2013 .

[11]  Sugata Gangopadhyay,et al.  Bent and generalized bent Boolean functions , 2013, Des. Codes Cryptogr..

[12]  Pantelimon Stanica,et al.  Octal Bent Generalized Boolean Functions , 2011, IACR Cryptol. ePrint Arch..

[13]  Hans Dobbertin,et al.  Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity , 1994, FSE.

[14]  K.-U. Schmidt Quaternary Constant-Amplitude Codes for Multicode CDMA , 2009, IEEE Trans. Inf. Theory.

[15]  Robert L. McFarland,et al.  A Family of Difference Sets in Non-cyclic Groups , 1973, J. Comb. Theory A.

[16]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[17]  Sugata Gangopadhyay,et al.  Some Results Concerning Generalized Bent Functions , 2011, IACR Cryptol. ePrint Arch..

[18]  Kai-Uwe Schmidt Complementary Sets, Generalized Reed–Muller Codes, and Power Control for OFDM , 2007, IEEE Transactions on Information Theory.

[19]  Patrick Solé,et al.  Connections between Quaternary and Binary Bent Functions , 2009, IACR Cryptol. ePrint Arch..