Polynomial predictive filtering in control instrumentation: a review

Additional delay is an unavoidable drawback of conventional filters used frequently in industrial electronics. This delay is particularly harmful if the filtered primary signal is to be used for time-critical feedback or synchronization purposes. Therefore, predictive signal processing methods can offer significant advantages for these real-time applications. Polynomial predictive filters are specified without explicit passbands and stopbands, and they are behaving delaylessly or predictively for smoothly varying signal components. The degree of smoothness of the incoming signal sets the requirements for the applied filtering scheme and its parameters. Smoothness of a signal is a fuzzy and application-specific concept: the degree of smoothness depends on the ratio of the bandwidth of the primary signal and the applied sampling rate, as well as the noise component. In this paper, the authors review the most important polynomial predictive filtering methods and algorithms, their design and implementation techniques, and a collection of successful applications.

[1]  O. Vainio,et al.  Multirate polynomials prediction with unevenly spaced samples , 1992 .

[2]  Paulo S. R. Diniz,et al.  Adaptive Filtering: Algorithms and Practical Implementation , 1997 .

[3]  Seppo J. Ovaska,et al.  Noise reduction in zero crossing detection by predictive digital filtering , 1995, IEEE Trans. Ind. Electron..

[4]  P. Taneli Harju Roundoff noise properties of IIR polynomial predictive filters , 1997, IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings.

[5]  O. Vainio,et al.  Delayless differentiation algorithm and its efficient implementation for motion control applications , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).

[6]  P. Taneli Harju Polynomial prediction using incomplete data , 1997, IEEE Trans. Signal Process..

[7]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[8]  Seppo J. Ovaska,et al.  Adaptive polynomial predictor for filtering , 1994 .

[9]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[10]  Seppo J. Ovaska,et al.  Optimization of polynomial predictive IIR filters using genetic algorithms , 1996, Proceedings of Third International Conference on Signal Processing (ICSP'96).

[11]  Seppo J. Ovaska,et al.  Optimization of IIR polynomial predictive filter magnitude response , 1997, Signal Process..

[12]  Peter Raeth,et al.  Book review: Fuzzy Engineering by Bart Kosko (Prentice Hall, 1997) , 1998, SGAR.

[13]  Seppo J. Ovaska,et al.  A class of predictive analog filters for sensor signal processing and control instrumentation , 1997, IEEE Trans. Ind. Electron..

[14]  Kouhei Ohnishi,et al.  A novel rotary acceleration sensor , 1995 .

[15]  P Loula,et al.  DC-level detection of burst-suppression EEG. , 1994, Methods of information in medicine.

[16]  Lotfi A. Zadeh Information Granulation and Its Centrality in Human and Machine Intelligence , 1998, Rough Sets and Current Trends in Computing.

[17]  Seppo J. Ovaska,et al.  Design of predictive IIR filters via feedback extension of FIR forward predictors , 1997 .

[18]  Xiao Zhi Gao,et al.  Polynomial predictive filters: complementing technique to fuzzy filtering , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[19]  R.D. Lorenz,et al.  Design principles and implementation of acceleration feedback to improve performance of DC drives , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[20]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[21]  Seppo J. Ovaska,et al.  Predictive compensation of time-varying computing delay on real-time control systems , 1997, IEEE Trans. Control. Syst. Technol..

[22]  Seppo J. Ovaska,et al.  Delayless acceleration measurement method for elevator control , 1998, IEEE Trans. Ind. Electron..

[23]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[24]  Seppo J. Ovaska Improving the velocity sensing resolution of pulse encoders by FIR prediction , 1991 .

[25]  Seppo J. Ovaska,et al.  Prediction of received signal power in CDMA cellular systems , 1995, 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century.

[26]  Singiresu S. Rao,et al.  Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  Gerhard P. Hancke,et al.  The microprocessor measurement of low values of rotational speed and acceleration , 1990 .

[28]  Seppo J. Ovaska,et al.  Prefiltering approach for optimal polynomial prediction , 1996, IEEE Trans. Signal Process..

[29]  O. Vainio,et al.  Structures for generating polynomial responses , 1994, Proceedings of 1994 37th Midwest Symposium on Circuits and Systems.

[30]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[31]  O. Vainio,et al.  Recursive linear smoothed Newton predictors for polynomial extrapolation , 1992 .

[32]  Charles S. Williams Designing digital filters , 1986 .

[33]  Peter Händel,et al.  Predictive digital filtering of sinusoidal signals , 1998, IEEE Trans. Signal Process..

[34]  D. O'Kelly,et al.  Measurement of steady-state and transient load-angle, angular velocity, and acceleration using an optical encoder , 1992 .

[35]  T. G. Campbell,et al.  Predictive FIR filters with low computational complexity , 1991 .

[36]  Seppo J. Ovaska Newton-type predictors - A signal processing oriented viewpoint , 1991, Signal Process..

[37]  Seppo J. Ovaska,et al.  Tachometer signal smoothing with analog discrete-time polynomial estimators , 1994, IEEE Trans. Ind. Electron..

[38]  Seppo J. Ovaska,et al.  FIR prediction using Newton's backward interpolation algorithm with smoothed successive differences , 1991 .

[39]  S. Mitra,et al.  Handbook for Digital Signal Processing , 1993 .

[40]  John Y. Hung,et al.  Implementation of a fuzzy controller for DC-DC converters using an inexpensive 8-b microcontroller , 1997, IEEE Trans. Ind. Electron..

[41]  V. Valimaki,et al.  Delayless signal smoothing using a median and predictive filter hybrid , 1996, Proceedings of Third International Conference on Signal Processing (ICSP'96).

[42]  Seppo J. Ovaska,et al.  Delayless recursive differentiator with efficient noise attenuation for control instrumentation , 1998, Signal Process..

[43]  Seppo J. Ovaska,et al.  Predictive synchronization and restoration of corrupted velocity samples , 1994 .

[44]  Yrjö Neuvo,et al.  FIR-median hybrid filters with predictive FIR substructures , 1988, IEEE Trans. Acoust. Speech Signal Process..

[45]  Markku Renfors,et al.  Recursive implementation of FIR differentiators with optimum noise attenuation , 1996 .

[46]  P. Taneli Harju Finite wordlength implementation of IIR polynomial predictive filters , 1997, IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings.

[47]  S. Ovaska,et al.  Lowpass IIR Predictors for Discrete-Time Signal Processing , 1995 .