Experimental characterization of coherent magnetization transport in a one-dimensional spin system

We experimentally characterize the non-equilibrium, room- temperature magnetization dynamics of a spin chain evolving under an effective double-quantum (DQ) Hamiltonian. We show that the Liouville space operators corresponding to the magnetization and the two-spin correlations evolve 90 degrees out of phase with each other, and drive the transport dynamics. For a nearest-neighbor-coupled N-spin chain, the dynamics are found to be restricted to a Liouville operator space whose dimension scales only as N 2 , leading to a slow growth of multi-spin correlations. Even though long-range couplings are present in the real system, we find excellent agreement between the analytical predictions and our experimental results, confirming that leakage out of the restricted Liouville space is slow on the timescales investigated. Our results indicate that the group velocity of the magnetization is 6.04±0.38µms 1 , corresponding to a coherent transport over N 26 spins on the experimental timescale. As the DQ Hamiltonian is related to the standard one-dimensional

[1]  Wenxian Zhang,et al.  NMR multiple quantum coherences in quasi-one-dimensional spin systems: Comparison with ideal spin-chain dynamics , 2009, 0906.2434.

[2]  L. Banchi,et al.  Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems , 2010, 1006.1217.

[3]  J. Carolan,et al.  Nuclear-Magnetic-Resonance Line Shape of a Linear Chain of Spins , 1973 .

[4]  G. Salamo,et al.  Fabrication of (In,Ga)As quantum-dot chains on GaAs(100) , 2004 .

[5]  Joerg Wrachtrup,et al.  Defect center room-temperature quantum processors , 2010, Proceedings of the National Academy of Sciences.

[6]  M. Rigol,et al.  Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems , 2010 .

[7]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[8]  Lorenza Viola,et al.  Coherent-state transfer via highly mixed quantum spin chains , 2011 .

[9]  Alastair Kay,et al.  Perfect, Efficent, State Transfer and its Application as a Constructive Tool , 2009, 0903.4274.

[10]  D. Cory,et al.  Simulations of information transport in spin chains. , 2007, Physical review letters.

[11]  J. Cardy,et al.  QUANTUM INVERSE SCATTERING METHOD AND CORRELATION FUNCTIONS , 1995 .

[12]  L. F. Santos Transport and control in one-dimensional systems , 2009, 0903.2459.

[13]  B. Meier,et al.  Polarization echoes in NMR. , 1992, Physical review letters.

[14]  Horacio M. Pastawski,et al.  A nuclear magnetic resonance answer to the Boltzmann–Loschmidt controversy? , 2000 .

[15]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[16]  J. Yesinowski,et al.  Multiple-quantum NMR dynamics in the quasi-one-dimensional distribution of protons in hydroxyapatite , 1993 .

[17]  Magnetization transport and quantized spin conductance. , 2002, Physical review letters.

[18]  Horacio M. Pastawski,et al.  Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems , 1998 .

[19]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[20]  O. Urakawa,et al.  Small - , 2007 .

[21]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[22]  I. Affleck,et al.  Diffusion and ballistic transport in one-dimensional quantum systems. , 2009, Physical review letters.

[23]  D. G. Cory,et al.  FIRST DIRECT MEASUREMENT OF THE SPIN DIFFUSION RATE IN A HOMOGENOUS SOLID , 1998 .

[24]  D. Cory,et al.  Multispin dynamics of the solid-state NMR free induction decay , 2005, cond-mat/0501578.

[25]  Cyrus P. Master,et al.  Quantum simulation of spin ordering with nuclear spins in a solid-state lattice , 2007 .

[26]  Paola Cappellaro,et al.  Encoding multiple quantum coherences in non-commuting bases , 2003 .

[27]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[28]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[29]  A. Pines,et al.  LECTURES ON PULSED NMR (2ND EDITION) , 2010 .

[30]  D Greenbaum,et al.  Spin diffusion of correlated two-spin states in a dielectric crystal. , 2004, Physical review letters.

[31]  D. Mattis The Theory of Magnetism Made Simple:An Introduction To Physical Concepts And To Some Useful Mathematical Methods , 2006 .

[32]  B. Saam,et al.  Universal long-time behavior of nuclear spin decays in a solid. , 2008, Physical review letters.

[33]  H. Pastawski,et al.  Effective one-body dynamics in Multiple-Quantum NMR , 2008, 0810.1722.

[34]  Giordano Scappucci,et al.  Realization of atomically controlled dopant devices in silicon. , 2007, Small.

[35]  J I Cirac,et al.  Engineering correlation and entanglement dynamics in spin systems. , 2008, Physical review letters.

[36]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[37]  Massimiliano Esposito,et al.  Emergence of diffusion in finite quantum systems , 2005 .

[38]  J. Yesinowski,et al.  1H and 19F Multiple-Quantum NMR Dynamics in Quasi-One-Dimensional Spin Clusters in Apatites , 1996 .

[39]  R. Brüschweiler,et al.  Non-ergodic quasi-equilibria in short linear spin 12 chains , 1997 .

[40]  D. Suter,et al.  NMR quantum simulation of localization effects induced by decoherence. , 2010, Physical review letters.

[41]  D. Cory,et al.  Dynamics and control of a quasi-one-dimensional spin system , 2007, 0706.0483.

[42]  E. B. Fel'dman,et al.  Multiple quantum nuclear magnetic resonance in one-dimensional quantum spin chains , 1997 .

[43]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[44]  S. Mukerjee,et al.  Signatures of diffusion and ballistic transport in the stiffness, dynamical correlation functions, and statistics of one-dimensional systems , 2008 .

[45]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[46]  Electron wavepacket propagation in a chain of coupled quantum dots , 2003, quant-ph/0311041.

[48]  P. Petit,et al.  One and two dimensional high temperature spin diffusion in molecular semiconductors , 1990 .

[49]  Y. Yen Multiple-Quantum NMR in Solids , 1983 .