Einstein–Podolsky–Rosen-Bohm experiments: A discrete data driven approach

[1]  T. Nieuwenhuizen Models for Quantum Measurement of Particles with Higher Spin , 2022, Entropy.

[2]  A. Khrennikov Contextuality, Complementarity, Signaling, and Bell Tests , 2022, Entropy.

[3]  F. Lad Resurrecting the Prospect of Supplementary Variableswith the Principle of Local Realism , 2022, AppliedMath.

[4]  E. Pothos,et al.  Violations of locality and free choice are equivalent resources in Bell experiments , 2021, Proceedings of the National Academy of Sciences.

[5]  K. Hess,et al.  Editorial: Towards a Local Realist View of the Quantum Phenomenon , 2021, Frontiers of Physics.

[6]  Frank Lad,et al.  The GHSZ Argument: A Gedankenexperiment Requiring More Denken , 2020, Entropy.

[7]  F. Jin,et al.  Discrete-Event Simulation of an Extended Einstein-Podolsky-Rosen-Bohm Experiment , 2020, Frontiers in Physics.

[8]  Brian Drummond,et al.  Understanding quantum mechanics: a review and synthesis in precise language , 2019, Open Physics.

[9]  Kristel Michielsen,et al.  Logical inference derivation of the quantum theoretical description of Stern–Gerlach and Einstein–Podolsky–Rosen–Bohm experiments , 2018, Annals of Physics.

[10]  Andrei Khrennikov,et al.  Hertz’s Viewpoint on Quantum Theory , 2018, Activitas Nervosa Superior.

[11]  M. Katsnelson,et al.  Separation of conditions as a prerequisite for quantum theory , 2018, Annals of Physics.

[12]  Andrei Khrennikov,et al.  Towards Experiments to Test Violation of the Original Bell Inequality , 2018, Entropy.

[13]  K. Michielsen,et al.  The photon identification loophole in EPRB experiments: computer models with single-wing selection , 2017, 1707.08307.

[14]  Thomas Lippert,et al.  Benchmarking gate-based quantum computers , 2017, Comput. Phys. Commun..

[15]  Karl Hess,et al.  Analysis of Wigner’s Set Theoretical Proof for Bell-Type Inequalities , 2016, 1612.03606.

[16]  Karl Hess,et al.  The digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments , 2016, Comput. Phys. Commun..

[17]  Marian Kupczynski,et al.  The Contextuality Loophole is Fatal for the Derivation of Bell Inequalities: Reply to a Comment by I. Schmelzer , 2016, 1611.05021.

[18]  Guillaume Adenier,et al.  Test of the no‐signaling principle in the Hensen loophole‐free CHSH experiment , 2016, 1606.00784.

[19]  H. C. Donker,et al.  Logical inference approach to relativistic quantum mechanics : Derivation of the Klein-Gordon equation , 2016, 1604.07265.

[20]  H De Raedt,et al.  Quantum theory as plausible reasoning applied to data obtained by robust experiments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Marian Kupczynski,et al.  Can we close the Bohr–Einstein quantum debate? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Kristel Michielsen,et al.  Quantum theory as a description of robust experiments: Derivation of the Pauli equation , 2015, 1504.04944.

[23]  R. Balian,et al.  A sub-ensemble theory of ideal quantum measurement processes , 2013, 1303.7257.

[24]  M. Katsnelson,et al.  Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.

[25]  Guillaume Adenier,et al.  Characterization of our source of polarization-entangled photons , 2012 .

[26]  H. De Raedt,et al.  Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation , 2011, 1112.2629.

[27]  Armen E. Allahverdyan,et al.  Understanding quantum measurement from the solution of dynamical models , 2011, 1107.2138.

[28]  T. Nieuwenhuizen,et al.  Is the Contextuality Loophole Fatal for the Derivation of Bell Inequalities? , 2011 .

[29]  Andrei Khrennikov,et al.  Violation of Bell's inequality and postulate on simultaneous measurement of compatible observables , 2011, 1102.4743.

[30]  Donald A. Graft,et al.  The Bell inequality cannot be validly applied to the Einstein-Podolsky-Rosen-Bohm (EPRB) experiments , 2009 .

[31]  Mónica B. Agüero,et al.  Time stamping in EPRB experiments: application on the test of non-ergodic theories , 2009 .

[32]  H. De Raedt,et al.  Possible experience: From Boole to Bell , 2009, 0907.0767.

[33]  Guillaume Adenier,et al.  Violation of Bell Inequalities as a Violation of Fair Sampling in Threshold Detectors , 2009, 0906.1539.

[34]  T. Nieuwenhuizen,et al.  Where Bell went wrong , 2008, 0812.3058.

[35]  Andrei Khrennikov,et al.  Bell-Boole Inequality: Nonlocality or Probabilistic Incompatibility of Random Variables? , 2008, Entropy.

[36]  A. Matzkin,et al.  Is Bell’s Theorem Relevant to Quantum Mechanics? On Locality and Non‐Commuting Observables , 2008, 0802.0613.

[37]  Kristel Michielsen,et al.  Event-by-Event Simulation of Einstein-Podolsky-Rosen-Bohm Experiments , 2007, 0712.3693.

[38]  S. Miyashita,et al.  Event-by-event simulation of quantum phenomena : Application to Einstein-Podolosky-Rosen-Bohm experiments , 2007, 0712.3781.

[39]  A. Khrennikov A Mathematician's Viewpoint to Bell's theorem: In Memory of Walter Philipp. In: Foundations of probability and physics-- 4 , 2006, quant-ph/0612153.

[40]  K. Michielsen,et al.  A local realist model for correlations of the singlet state , 2006 .

[41]  A. Khrennikov,et al.  Is the fair sampling assumption supported by EPR experiments? , 2006, quant-ph/0606122.

[42]  A. F. Kracklauer,et al.  Bell’s inequalities and EPR‐B experiments: are they disjoint? , 2005 .

[43]  Luigi Accardi,et al.  Some loopholes to save quantum nonlocality , 2005 .

[44]  A J Leggett,et al.  The Quantum Measurement Problem , 2005, Science.

[45]  E. Santos Bell's theorem and the experiments: Increasing empirical support for local realism? , 2004, quant-ph/0410193.

[46]  W. Philipp,et al.  Bell’s theorem: Critique of proofs with and without inequalities , 2004, quant-ph/0410015.

[47]  M. Kupczynski,et al.  Entanglement and Bell Inequalities , 2004 .

[48]  P. Morgan Bell inequalities for random fields , 2004, cond-mat/0403692.

[49]  W. Philipp,et al.  Bell's theorem and the problem of decidability between the views of Einstein and Bohr , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Karl Hess,et al.  A possible loophole in the theorem of Bell , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  I. Pitowsky,et al.  George Boole's ‘Conditions of Possible Experience’ and the Quantum Puzzle , 1994, The British Journal for the Philosophy of Science.

[52]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[53]  Saverio Pascazio,et al.  Time and Bell-type inequalities , 1986 .

[54]  M. Kupczyński,et al.  On some new tests of completeness of quantum mechanics , 1986 .

[55]  Willem M. de Muynck,et al.  The Bell inequalities and their irrelevance to the problem of locality in quantum mechanics , 1986 .

[56]  D. Howard Einstein on locality and separability , 1985 .

[57]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[58]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[59]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[60]  J. Schwinger THE ALGEBRA OF MICROSCOPIC MEASUREMENT. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Banach,et al.  Sur la décomposition des ensembles de points en parties respectivement congruentes , 1924 .

[62]  G. Boole XII. On the theory of probabilities , 1862, Philosophical Transactions of the Royal Society of London.