Screening of working fluids for the ejector refrigeration system

For an ejector refrigeration system, the working fluid significantly influences the ejector behavior and system performance as well as ejector design. There are three categories of working fluids: ...

[1]  A. Khalil,et al.  Ejector design and theoretical study of R134a ejector refrigeration cycle , 2011 .

[2]  A. Mani,et al.  Experimental studies on an ammonia ejector refrigeration system , 2006 .

[3]  Clemens Pollerberg,et al.  Solar driven steam jet ejector chiller , 2009 .

[4]  Supachart Chungpaibulpatana,et al.  Experimental investigation of an ejector refrigerator: Effect of mixing chamber geometry on system performance , 2001 .

[5]  Björn Palm,et al.  Parametric analysis of ejector working characteristics in the refrigeration system , 2014 .

[6]  Per Lundqvist,et al.  An exergy analysis of a solar-driven ejector refrigeration system , 2004 .

[7]  Giuseppe Grazzini,et al.  Prediction of condensation in steam ejector for a refrigeration system , 2011 .

[8]  Jianyong Chen,et al.  Investigation of ejectors in refrigeration system: Optimum performance evaluation and ejector area ratios perspectives , 2014 .

[9]  Szabolcs Varga,et al.  Readdressing working fluid selection with a view to designing a variable geometry ejector , 2015 .

[10]  Nehad Al-Khalidy,et al.  An experimental study of an ejector cycle refrigeration machine operating on R113 , 1998 .

[11]  A. Selvaraju,et al.  Analysis of an ejector with environment friendly refrigerants , 2004 .

[12]  Ian W. Eames,et al.  Results of an experimental study of an advanced jet-pump refrigerator operating with R245fa , 2007 .

[13]  Wimolsiri Pridasawas,et al.  Solar-driven refrigeration systems with focus on the ejector cycle , 2006 .

[14]  Junjie Yan,et al.  A 1D model to predict ejector performance at critical and sub-critical operational regimesModèle unidimensionnel utilisé pour prévoir la performance d'un éjecteur sous des conditions de fonctionnement critiques et sous-critiques , 2013 .

[15]  Rafet Yapici,et al.  Experimental investigation of performance of vapor ejector refrigeration system using refrigerant R123 , 2008 .

[16]  Olexiy Buyadgie,et al.  Conceptual design of binary/multicomponent fluid ejector refrigeration systems , 2012 .

[17]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[18]  Latra Boumaraf,et al.  Modeling of an ejector refrigerating system operating in dimensioning and off-dimensioning conditions with the working fluids R142b and R600a , 2009 .

[19]  Jorge I. Hernández,et al.  Performance of ejector cooling systems using low ecological impact refrigerants , 2011 .

[20]  Robert Dobson,et al.  Steam jet ejector cooling powered by waste or solar heat , 2009 .

[21]  Bin-Juine Huang,et al.  A 1-D analysis of ejector performance , 1999 .

[22]  G. C. Hourahan,et al.  Physical, safety, and environmental data for current and alternative refrigerants. , 2011 .

[23]  Armando C. Oliveira,et al.  CFD study of a variable area ratio ejector using R600a and R152a refrigerants , 2013 .

[24]  Per Lundqvist,et al.  A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant , 2007 .

[25]  A. Lallemand,et al.  Performances d'une machine tritherme à éjecteur utilisant des mélanges de fluides frigorigènes , 1999 .

[26]  M. Sokolov,et al.  Enhanced ejector refrigeration cycles powered by low grade heat. Part 3. Experimental results , 1991 .

[27]  Thanarath Sriveerakul,et al.  CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle , 2013 .