Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

[1]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[2]  W. Pan Akaike's Information Criterion in Generalized Estimating Equations , 2001, Biometrics.

[3]  You-Gan Wang,et al.  Working‐correlation‐structure identification in generalized estimating equations , 2009, Statistics in medicine.

[4]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[5]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[6]  A. Desmond Optimal estimating functions, quasi-likelihood and statistical modelling , 1997 .

[7]  M. Lindstrom,et al.  A survey of methods for analyzing clustered binary response data , 1996 .

[8]  N. Rao Chaganty,et al.  An alternative approach to the analysis of longitudinal data via generalized estimating equations , 1997 .

[9]  P. Diggle Analysis of Longitudinal Data , 1995 .

[10]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[11]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[12]  Thomas R. Fleming,et al.  Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis , 1997 .

[13]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[14]  J. Shults,et al.  On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter , 1999 .

[15]  Thomas A. Severini,et al.  Extended Generalized Estimating Equations for Clustered Data , 1998 .

[16]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[17]  C. Small,et al.  Hilbert Space Methods in Probability and Statistical Inference , 1994 .

[18]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[19]  G. Judge,et al.  Empirical Evidence Concerning the Finite Sample Performance of EL-Type Structural Equation Estimation and Inference Methods , 2003 .

[20]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[21]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[22]  Lurdes Y T Inoue,et al.  Combining longitudinal studies of PSA. , 2004, Biostatistics.

[23]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[24]  P S Albert,et al.  A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of neuroimaging data. , 1995, Biometrics.

[25]  G. Fitzmaurice,et al.  A caveat concerning independence estimating equations with multivariate binary data. , 1995, Biometrics.

[26]  V. Carey,et al.  Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance , 2003 .

[27]  B. Lindsay,et al.  Improving generalised estimating equations using quadratic inference functions , 2000 .

[28]  C. Manski Partial Identification of Probability Distributions , 2003 .

[29]  James M. Robins,et al.  Coarsening at Random: Characterizations, Conjectures, Counter-Examples , 1997 .