An analysis of the halo and relic radio emission from Abell 3376 from Murchison Widefield Array observations

We have carried out multiwavelength observations of the nearby (z = 0.046) rich, merging galaxy cluster Abell 3376 with the Murchison Widefield Array (MWA). As a part of the GaLactic and Extragalactic All-sky MWA Survey, this cluster was observed at 88, 118, 154, 188, and 215 MHz. The known radio relics, towards the eastern and western peripheries of the cluster, were detected at all the frequencies. The relics, with a linear extent of ∼1 Mpc each, are separated by ∼2 Mpc. Combining the current observations with those in the literature, we have obtained the spectra of these relics over the frequency range 80–1400 MHz. The spectra follow power laws, with α = −1.17 ± 0.06 and −1.37 ± 0.08 for the west and east relics, respectively (S∝να). Assuming the break frequency to be near the lower end of the spectrum we estimate the age of the relics to be ∼0.4 Gyr. No diffuse radio emission from the central regions of the cluster (halo) was detected. The upper limit on the radio power of any possible halo that might be present in the cluster is a factor of 35 lower than that expected from the radio power and X-ray luminosity correlation for cluster haloes. From this we conclude that the cluster halo is very extended (>500 kpc) and/or most of the radio emission from the halo has decayed. The current limit on the halo radio power is a factor of 10 lower than the existing upper limits with possible implications for models of halo formation.

[1]  S. J. Tingay,et al.  The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation , 2015, Publications of the Astronomical Society of Australia.

[2]  A. Scaife,et al.  Early science with the Karoo Array Telescope: a mini-halo candidate in galaxy cluster Abell 3667 , 2014, 1412.2652.

[3]  E. Lenc,et al.  Understanding instrumental Stokes leakage in Murchison Widefield Array polarimetry , 2014, 1412.4466.

[4]  Roger Cappallo,et al.  The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees , 2014, Publications of the Astronomical Society of Australia.

[5]  A. R. Whitney,et al.  The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667 , 2014, 1408.3167.

[6]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[7]  T. Jones,et al.  COSMIC RAYS IN GALAXY CLUSTERS AND THEIR NONTHERMAL EMISSION , 2014, 1401.7519.

[8]  India.,et al.  The merging cluster of galaxies Abell 3376: an optical view , 2013, 1310.7493.

[9]  N. Battaglia,et al.  THE RADIO RELICS AND HALO OF EL GORDO, A MASSIVE z = 0.870 CLUSTER MERGER , 2013, 1310.6786.

[10]  G. Macario,et al.  The Extended GMRT Radio Halo Survey - I. New upper limits on radio halos and mini-halos , 2013, 1306.3102.

[11]  M. L. Norman,et al.  Polarization of cluster radio halos with upcoming radio interferometers , 2013, 1304.6260.

[12]  R. Machado,et al.  Simulations of the merging galaxy cluster Abell 3376 , 2013, 1301.4434.

[13]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[14]  Bryan J. Butler,et al.  AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz , 2012, 1211.1300.

[15]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[16]  S. Poppi,et al.  Detection of a radio bridge in Abell 3667 , 2012, 1205.1082.

[17]  Bangalore,et al.  Spectral and polarization study of the double relics in Abell 3376 using the GMRT and the VLA , 2012, 1206.3389.

[18]  Gabriele Giovannini,et al.  Clusters of galaxies: observational properties of the diffuse radio emission , 2012, The Astronomy and Astrophysics Review.

[19]  J. Roerdink,et al.  A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.

[20]  T. Ohashi,et al.  X-Ray View of the Shock Front in the Merging Cluster Abell 3376 with Suzaku , 2011, 1112.5955.

[21]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[22]  M. Markevitch,et al.  ON THE CONNECTION BETWEEN GIANT RADIO HALOS AND CLUSTER MERGERS , 2010, 1008.3624.

[23]  A. Lazarian,et al.  Acceleration of primary and secondary particles in galaxy clusters by compressible MHD turbulence: from radio haloes to gamma-rays , 2010, 1008.0184.

[24]  Jean-Luc Starck,et al.  GeV GAMMA-RAY FLUX UPPER LIMITS FROM CLUSTERS OF GALAXIES , 2010 .

[25]  R. Cassano The radio–X-ray luminosity correlation of radio halos at low radio frequency - Application of the turbulent re-acceleration model , 2010, 1004.1171.

[26]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[27]  M. Moles,et al.  MAGIC GAMMA-RAY TELESCOPE OBSERVATION OF THE PERSEUS CLUSTER OF GALAXIES: IMPLICATIONS FOR COSMIC RAYS, DARK MATTER, AND NGC 1275 , 2009, 0909.3267.

[28]  K. Dolag,et al.  On the evolution of giant radio halos and their connection with cluster mergers , 2009, 0909.2343.

[29]  E. al.,et al.  Constraints on the multi-TeV particle population in the Coma galaxy cluster with HESS observations , 2009, 0907.0727.

[30]  Christopher L. Williams,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[31]  L. Rudnick,et al.  AN OBJECTIVE SURVEY OF Mpc-SCALE RADIO EMISSION IN 0.03 < z < 0.3 BRIGHT X-RAY CLUSTERS , 2009, 0903.0335.

[32]  et al,et al.  Very high energy gamma-ray observations of the galaxy clusters Abell 496 and Abell 85 with HESS , 2008, 0812.1638.

[33]  Tim J. Cornwell,et al.  The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm , 2008, IEEE Journal of Selected Topics in Signal Processing.

[34]  A. Schwope,et al.  Diffuse radio emission from clusters in the MareNostrum Universe simulation , 2008, 0807.1266.

[35]  S. Bardelli,et al.  Shock acceleration as origin of the radio relic in A 521 , 2008, 0803.4127.

[36]  S. Bardelli,et al.  GMRT radio halo survey in galaxy clusters at z = 0.2–0.4 - II. The eBCS clusters and analysis of the complete sample , 2008, 0803.4084.

[37]  K. Dolag,et al.  Cosmic Rays and Radio Halos in Galaxy Clusters: New Constraints from Radio Observations , 2007, 0710.0801.

[38]  K. Dolag,et al.  New scaling relations in cluster radio haloes and the re‐acceleration model , 2007, 0704.3490.

[39]  F. Durret,et al.  Giant Ringlike Radio Structures Around Galaxy Cluster Abell 3376 , 2006, Science.

[40]  G. Brunetti,et al.  Statistics of giant radio haloes from electron reacceleration models , 2006, astro-ph/0604103.

[41]  K. Subramanian,et al.  Evolving turbulence and magnetic fields in galaxy clusters , 2005, astro-ph/0505144.

[42]  H. Boehringer,et al.  Diffuse radio emission in a REFLEX cluster , 2005, astro-ph/0508238.

[43]  R.CassanoG.Brunetti Cluster mergers and non-thermal phenomena: expectations from a statistical magneto-turbulent model , 2004, astro-ph/0412475.

[44]  G. Brunetti,et al.  Cluster Mergers and Non-Thermal Phenomena: A Statistical Magneto-Turbulent Model , 2004, astro-ph/0412325.

[45]  T. Ensslin,et al.  Constraining the population of cosmic ray protons in cooling flow clusters with γ-ray and radio observations: Are radio mini-halos of hadronic origin? , 2003, astro-ph/0306257.

[46]  G. Giovannini,et al.  Deep images of cluster radio halos , 2003 .

[47]  G. B. Taylor,et al.  Cluster Magnetic Fields , 2002 .

[48]  H. Andernach,et al.  Four Extreme Relic Radio Sources in Clusters of Galaxies , 2001, astro-ph/0105267.

[49]  D. Buote On the Origin of Radio Halos in Galaxy Clusters , 2001, astro-ph/0104211.

[50]  V. Petrosian On the Nonthermal Emission and Acceleration of Electrons in Coma and Other Clusters of Galaxies , 2001, astro-ph/0101145.

[51]  G. Giovannini,et al.  Particle reacceleration in the Coma cluster: radio properties and hard X‐ray emission , 2000, astro-ph/0008518.

[52]  C. Sarazin,et al.  Radio Halo and Relic Candidates from the Westerbork Northern Sky Survey , 2000, astro-ph/0010251.

[53]  R. Hunstead,et al.  A Powerful Radio Halo in the Hottest Known Cluster of Galaxies 1E 0657–56 , 2000, astro-ph/0006072.

[54]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[55]  Astrophysics,et al.  Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies , 1999, astro-ph/9905122.

[56]  M. Tordi,et al.  Radio halo and relic candidates from the NRAO VLA Sky Survey , 1999, astro-ph/9904210.

[57]  C. Sarazin The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission , 1999, astro-ph/9901061.

[58]  S. Borgani,et al.  The Observational Mass Function of Nearby Galaxy Clusters , 1998, astro-ph/9804188.

[59]  R. Ekers,et al.  THE EXTENDED RADIO EMISSION IN THE LUMINOUS X-RAY CLUSTER A3667 , 1997 .

[60]  A. Biviano,et al.  Structures in Galaxy Clusters , 1993 .

[61]  Frank C. Jones,et al.  The plasma physics of shock acceleration , 1989 .

[62]  Roger D. Blandford,et al.  Particle acceleration at astrophysical shocks: A theory of cosmic ray origin , 1987 .

[63]  H. J. Rood,et al.  A Compilation of Redshifts and Velocity Dispersions for ACO Clusters , 1987 .

[64]  F. Schwab,et al.  Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry , 1984 .

[65]  W. Goss,et al.  Radio emission from the 2006 – 56 region , 1982 .

[66]  B. Dennison,et al.  Formation of radio halos in clusters of galaxies from cosmic-ray protons , 1980 .