A topological assessment of the electronic structure of mesoionic compounds

Mesoionic compounds belonging to the 1,3‐oxazol‐5‐one, 1,3‐diazole‐4‐thione and 1,3‐thiazole‐5‐thione rings have been evaluated by a combination of Density Functional Theory, Quantum Theory of Atoms in Molecules, Electron Localization Function, Natural Bond Orbitals and Geodesic Electrostatic Potential Charge calculations. Atomic, bond, and ring properties have been considered to describe the electronic structure of mesoionic compounds. The results show that not only the ring type, but also the substituent groups have great influence on these properties. In addition, there is a significant and heterogeneous π‐bonding contribution throughout the mesoionic rings. Finally, we conclude that some classical conceptions of charge localization and π‐bonding contribution in these compounds are misleading or incomplete. © 2015 Wiley Periodicals, Inc.

[1]  Jean-Philip Piquemal,et al.  Are Bond Critical Points Really Critical for Hydrogen Bonding? , 2013, Journal of chemical theory and computation.

[2]  W. Ollis,et al.  73. Cyclic meso-ionic compounds. Part I. The structure of the sydnones and related compounds , 1949 .

[3]  M. Breza Comparative study of non-planar cyclotetraphosphazenes and their isostructural hydrocarbon analogues , 2004 .

[4]  S. Mason,et al.  Valence-shell charge concentrations and electron delocalization in alkyllithium complexes: negative hyperconjugation and agostic bonding. , 2002, Chemistry.

[5]  E. Molins,et al.  From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems , 2002 .

[6]  K. Mierzwicki,et al.  AIM and ELF analysis of the H-, Me-, and F-substituted FeIII–TAML complexes , 2011 .

[7]  Thomas Heine,et al.  Description of electron delocalization via the analysis of molecular fields. , 2005, Chemical reviews.

[8]  I. Vidal,et al.  Evidence of a long C-C attractive interaction in cerussite mineral: QTAIM and ELF analyses , 2014, Journal of Molecular Modeling.

[9]  S. J. Grabowski QTAIM characteristics of halogen bond and related interactions. , 2012, The journal of physical chemistry. A.

[10]  Understanding the planar tetracoordinate carbon atom: spiropentadiene dication. , 2008, The journal of physical chemistry. A.

[11]  K. Patel,et al.  Synthesis, characterization, and antimicrobial studies of novel 1,3,4-thiadiazolium-5-thiolates , 2011, Medicinal Chemistry Research.

[12]  M. Kawase,et al.  The use of sulfur ylides in the synthesis of 3-alkyl(aryl)thio-4-trifluoromethylpyrroles from mesoionic 4-trifluoroacetyl-1,3-oxazolium-5-olates , 2012 .

[13]  B. Silvi,et al.  The Topological Analysis of the Electron Localization Function. A Key for a Position Space Representation of Chemical Bonds , 2005 .

[14]  G. Bertrand,et al.  Mesoionic thiazol-5-ylidenes as ligands for transition metal complexes. , 2011, Chemical communications.

[15]  A. Jubert,et al.  Conformational and stereoelectronic investigation of tryptamine. An AIM/NBO study , 2012, Journal of Molecular Modeling.

[16]  Nithinchandra,et al.  Regioselective reaction: synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone. , 2012, European journal of medicinal chemistry.

[17]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[18]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[19]  A. Otero-de-la-Roza,et al.  Topological partition of the elastic constants of crystals. , 2011, The journal of physical chemistry. A.

[20]  B. Silvi How topological partitions of the electron distributions reveal delocalization , 2004 .

[21]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[22]  G. Rocha,et al.  A DFT and Natural Resonance Theory investigation of the electronic structure of mesoionic compounds , 2012, Theoretical Chemistry Accounts.

[23]  A. Jubert,et al.  Conformational and electronic (AIM/NBO) study of unsubstituted A-type dimeric proanthocyanidin , 2009, Journal of molecular modeling.

[24]  L. Leon,et al.  A comparative study of mesoionic compounds in Leishmania sp. and toxicity evaluation. , 2007, European journal of medicinal chemistry.

[25]  A. G. Souza,et al.  Synthesis and characterization of nanocomplexes of Eu(III) and Er(III) coordinate with 2(4-clorophenil)-3-phenyl-1,3,4-thiadiazoleo-5-tiolate mesoionic , 2010 .

[26]  Víctor Luaña,et al.  Topological Characterization of the Electron Density Laplacian in Crystals. The Case of the Group IV Elements , 2010 .

[27]  Vincent Tognetti,et al.  On the physical nature of halogen bonds: a QTAIM study. , 2013, The journal of physical chemistry. A.

[28]  Frank Weinhold,et al.  Natural bond critical point analysis: Quantitative relationships between natural bond orbital‐based and QTAIM‐based topological descriptors of chemical bonding , 2012, J. Comput. Chem..

[29]  Characterisation of agostic interactions by a topological analysis of experimental and theoretical charge densities in [EtTiCl3(dmpe)] [dmpe = 1,2-bis(dimethylphosphino)ethane] , 1998 .

[30]  C. Araújo,et al.  Two-photon absorption in mesoionic compounds pumped at the visible and at the infrared , 2000 .

[31]  L. Farrugia,et al.  Evidence for side-chain π-delocalization in a planar substituted benzene: an experimental and theoretical charge density study on 2,5-dimethoxybenzaldehyde thiosemicarbazone. , 2011, The journal of physical chemistry. A.

[32]  B. A. Hess,et al.  Sulfur-containing mesoionic compounds: Theoretical study on structure and properties , 2002 .

[33]  A. Schönberg 158. The constitution and isomerism of certain triazole derivatives of the nitron type in the light of the Bredt rule and the theory of resonance , 1938 .

[34]  Paul L. A. Popelier,et al.  Characterization of Heterocyclic Rings through Quantum Chemical Topology , 2013, J. Chem. Inf. Model..

[35]  Mark A. Spackman,et al.  Potential derived charges using a geodesic point selection scheme , 1996, J. Comput. Chem..

[36]  Clark R. Landis,et al.  NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS , 2001 .

[37]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[38]  Xavier Fradera,et al.  The Lewis Model and Beyond , 1999 .

[39]  K. Chandrasekharan,et al.  Third order nonlinear optical properties and two photon absorption in newly synthesized phenyl sydnone doped polymer , 2007 .

[40]  R. J. Boyd,et al.  Mechanism of the Reduction of an Oxidized Glutathione Peroxidase Mimic with Thiols. , 2012, Journal of chemical theory and computation.

[41]  P. Cintas,et al.  On the reactivity of 2-alkyl-1,3-thiazolium-4-olates toward electrophiles , 2006 .

[42]  C. Araújo,et al.  Nonlinear absorption of new mesoionic compounds , 2006 .

[43]  A. Simas,et al.  Mesoionic Compounds: Amphiphilic Heterocyclic Betaines , 2000 .

[44]  V. Gold Compendium of chemical terminology , 1987 .

[45]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[46]  D. Astruc,et al.  Catalysis by 1,2,3-triazole- and related transition-metal complexes , 2014 .

[47]  Johannes M. Dieterich,et al.  Heteroaromaticity approached by charge density investigations and electronic structure calculations. , 2013, Physical chemistry chemical physics : PCCP.

[48]  P. Cintas,et al.  Push-pull 1,3-thiazolium-5-thiolates. Formation via concerted and stepwise pathways, and theoretical evaluation of NLO properties. , 2010, Organic & biomolecular chemistry.

[49]  Yi-Gui Wang,et al.  A practical and efficient method to calculate AIM localization and delocalization indices at post‐HF levels of theory , 2003, J. Comput. Chem..

[50]  W. Ollis,et al.  Meso-ionic compounds , 2022, Advances in Heterocyclic Chemistry.

[51]  Henry S Rzepa,et al.  Nature of the Carbon-Sulfur Bond in the Species H-CS-OH. , 2011, Journal of chemical theory and computation.

[52]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[53]  A. Simas,et al.  Are mesoionic compounds aromatic , 1998 .

[54]  Gustavo L. C. Moura,et al.  Mesoionic 2-n-cycloalkylamino-5-alkyl-1,3-dithiolium-4-thiolates , 1996 .

[55]  S. Papson “Model” , 1981 .

[56]  J. Bravo,et al.  Azodicarboxamides vs. Azodicarboxylates in Reactions against Thioisomünchnones: 1,3‐Dipolar Cycloaddition or Nucleophilic Addition? , 2010 .

[57]  Gustavo L. C. Moura,et al.  1,3-thiazolium-5-thiolates mesoionic compounds: semiempirical evaluation of their first static hyperpolarizabilities and synthesis of new examples , 2010 .

[58]  P. Fuentealba,et al.  Chapter 5 Understanding and using the electron localization function , 2007 .

[59]  G. Bertrand,et al.  Gold(III)- versus gold(I)-induced cyclization: synthesis of six-membered mesoionic carbene and acyclic (aryl)(heteroaryl) carbene complexes. , 2013, Angewandte Chemie.

[60]  P. Cintas,et al.  Exploiting synthetic chemistry with mesoionic rings: improvements achieved with thioisomünchnones. , 2005, Accounts of chemical research.

[61]  L. Gracia,et al.  Chemical structure and reactivity by means of quantum chemical topology analysis , 2015 .

[62]  C. M. Sant’Anna,et al.  Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies. , 2012, Bioorganic & medicinal chemistry.

[63]  S. S. Veiga,et al.  Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma , 2004, British Journal of Cancer.

[64]  Frank Weinhold,et al.  Natural bond orbital methods , 2012 .

[65]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[66]  P. Popelier,et al.  Nature of Chemical Interactions from the Profiles of Electron Delocalization Indices. , 2011, Journal of chemical theory and computation.

[67]  Shubin Liu,et al.  Spanning set of silica cluster isomer topologies from QTAIM. , 2011, The journal of physical chemistry. A.