Tunable charge-trap memory based on few-layer MoS2.

Charge-trap memory with high-κ dielectric materials is considered to be a promising candidate for next-generation memory devices. Ultrathin layered two-dimensional (2D) materials like graphene and MoS2 have been receiving much attention because of their fantastic physical properties and potential applications in electronic devices. Here, we report on a dual-gate charge-trap memory device composed of a few-layer MoS2 channel and a three-dimensional (3D) Al2O3/HfO2/Al2O3 charge-trap gate stack. Because of the extraordinary trapping ability of both electrons and holes in HfO2, the MoS2 memory device exhibits an unprecedented memory window exceeding 20 V. Importantly, with a back gate the window size can be effectively tuned from 15.6 to 21 V; the program/erase current ratio can reach up to 10(4), allowing for multibit information storage. Moreover, the device shows a high endurance of hundreds of cycles and a stable retention of ∼ 28% charge loss after 10 years, which is drastically lower than ever reported MoS2 flash memory. The combination of 2D materials with traditional high-κ charge-trap gate stacks opens up an exciting field of nonvolatile memory devices.

[1]  Juqing Liu,et al.  A Universal Method for Preparation of Noble Metal Nanoparticle‐Decorated Transition Metal Dichalcogenide Nanobelts , 2014, Advanced materials.

[2]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[3]  James M Tour,et al.  Nanoporous silicon oxide memory. , 2014, Nano letters.

[4]  H. Choi,et al.  Graphene versus ohmic metal as source-drain electrode for MoS₂ nanosheet transistor channel. , 2014, Small.

[5]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[6]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[7]  Qing Zhang,et al.  Few-layer MoS2: a promising layered semiconductor. , 2014, ACS nano.

[8]  Xiaogan Liang,et al.  Multibit data storage states formed in plasma-treated MoS₂ transistors. , 2014, ACS nano.

[9]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[10]  Su‐Ting Han,et al.  Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide. , 2014, ACS nano.

[11]  K. Novoselov,et al.  Commensurate–incommensurate transition in graphene on hexagonal boron nitride , 2014, Nature Physics.

[12]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[13]  L. Gu,et al.  In situ electron holography study of charge distribution in high-κ charge-trapping memory , 2013, Nature Communications.

[14]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[15]  Heung Cho Ko,et al.  Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. , 2013, Small.

[16]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[17]  A. Mishra,et al.  Reduced Multilayer Graphene Oxide Floating Gate Flash Memory With Large Memory Window and Robust Retention Characteristics , 2013, IEEE Electron Device Letters.

[18]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[19]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[20]  L. Zhen,et al.  Surface potential and interlayer screening effects of few-layer MoS2 nanoflakes , 2013 .

[21]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[22]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[23]  Qiyuan He,et al.  Memory devices using a mixture of MoS₂ and graphene oxide as the active layer. , 2013, Small.

[24]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[25]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[26]  Wei Huang,et al.  Preparation of MoS₂-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. , 2012, Small.

[27]  P. Jeon,et al.  MoS2 nanosheets for top-gate nonvolatile memory transistor channel. , 2012, Small.

[28]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[29]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, Nature Physics.

[30]  Kang L. Wang,et al.  Transparent and flexible graphene charge-trap memory. , 2012, ACS nano.

[31]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[32]  B. Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[33]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[34]  Dong Uk Lee,et al.  Low operation voltage and high thermal stability of a WSi2 nanocrystal memory device using an Al2O3/HfO2/Al2O3 tunnel layer , 2012 .

[35]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[36]  K. Shepard,et al.  Spin and valley quantum Hall ferromagnetism in graphene , 2012, Nature Physics.

[37]  Kang L. Wang,et al.  Impact of gate work-function on memory characteristics in Al2O3/HfOx/Al2O3/graphene charge-trap memory devices , 2012 .

[38]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[39]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[40]  Kang L. Wang,et al.  Graphene flash memory. , 2011, ACS nano.

[41]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[42]  Yen-Ting Chen,et al.  Ultrathin HfON Trapping Layer for Charge-Trap Memory Made by Atomic Layer Deposition , 2010, IEEE Electron Device Letters.

[43]  Jungwoo Oh,et al.  Improved thermal stability of Al2O3/HfO2/Al2O3 high-k gate dielectric stack on GaAs , 2010 .

[44]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[45]  S. Sharma,et al.  Application of high-k dielectric stacks charge trapping for CMOS technology , 2010 .

[46]  Jyun-Yi Wu,et al.  Bandgap engineering of tunnel oxide with multistacked layers of Al2O3/HfO2/SiO2 for Au-nanocrystal memory application , 2008 .

[47]  S. McAlister,et al.  Comparison of MONOS Memory Device Integrity When Using $\hbox{Hf}_{1 - x - y}\hbox{N}_{x}\hbox{O}_{y}$ Trapping Layers With Different N Compositions , 2008, IEEE Transactions on Electron Devices.

[48]  Byeong Kwon Ju,et al.  Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3∕HfO2∕Al2O3 structure , 2008 .

[49]  Heng-Yuan Lee,et al.  Charge trapping characteristics of atomic-layer-deposited HfO2 films with Al2O3 as a blocking oxide for high-density non-volatile memory device applications , 2007 .

[50]  Ming-Fu Li,et al.  Multistacked Al2O3∕HfO2∕SiO2 tunnel layer for high-density nonvolatile memory application , 2007 .

[51]  D. Jena,et al.  Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. , 2007, Physical review letters.

[52]  David-Wei Zhang,et al.  Memory Effect of Metal-Insulator-Silicon Capacitor with HfO2-Al2O3 Multilayer and Hafnium Nitride Gate , 2007 .

[53]  Amy Hsiu-Fen Chou,et al.  Flash Memories , 2000, The VLSI Handbook.

[54]  Yung-Chun Wu,et al.  Twin Thin-Film Transistor Nonvolatile Memory With an Indium–Gallium–Zinc–Oxide Floating Gate , 2013, IEEE Electron Device Letters.

[55]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[56]  University of Huddersfield Repository High resolution medium energy ion scattering analysis for the quantitative depth profiling of ultrathin high-k layers , 2022 .