The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity

Abstract Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing and matching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the Acore domains, yet domain interfaces and the flexible Asub domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.

[1]  Elizabeth I. Parkinson,et al.  A community resource for paired genomic and metabolomic data mining , 2021, Nature Chemical Biology.

[2]  Robert J A Goode,et al.  Exploring modular reengineering strategies to redesign the teicoplanin non-ribosomal peptide synthetase† , 2020, Chemical science.

[3]  D. Ackerley,et al.  Efficient rational modification of non-ribosomal peptides by adenylation domain substitution , 2020, Nature Communications.

[4]  Roger G. Linington,et al.  MIBiG 2.0: a repository for biosynthetic gene clusters of known function , 2019, Nucleic Acids Res..

[5]  M. Ehrmann,et al.  From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. , 2020, Natural product reports.

[6]  F. Barona-Gómez,et al.  Evolutionary dynamics of natural product biosynthesis in bacteria. , 2019, Natural product reports.

[7]  Pierre Stallforth,et al.  Structure elucidation of the syringafactin lipopeptides provides insight in the evolution of nonribosomal peptide synthetases† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc03633d , 2019, Chemical science.

[8]  Justin J. J. van der Hooft,et al.  The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery , 2019, ACS central science.

[9]  M. Weigt,et al.  Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility , 2019, Science.

[10]  Mohammad Alanjary,et al.  Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. , 2019, Natural product reports.

[11]  H. Jenke-Kodama,et al.  Emulating evolutionary processes to morph aureothin-type modular polyketide synthases and associated oxygenases , 2019, Nature Communications.

[12]  M. Cryle,et al.  A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc03678d , 2019, Chemical science.

[13]  H. Bode,et al.  Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains , 2019, Nature Chemistry.

[14]  Giovanni De Poli,et al.  Chapter 8 , 2019, Wide Neighborhoods.

[15]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[16]  Alistair S Brown,et al.  Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. , 2018, Natural product reports.

[17]  T. Izoré,et al.  The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. , 2018, Natural product reports.

[18]  J. Hashimoto,et al.  Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution , 2018, Nature Communications.

[19]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[20]  Frank Wesche,et al.  De novo design and engineering of non-ribosomal peptide synthetases. , 2018, Nature chemistry.

[21]  Juan C. Sánchez-DelBarrio,et al.  DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. , 2017, Molecular biology and evolution.

[22]  Christine J. Martin,et al.  Diversity oriented biosynthesis via accelerated evolution of modular gene clusters , 2017, Nature Communications.

[23]  M. F. Fiore,et al.  Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543. , 2017, ACS chemical biology.

[24]  R. Süssmuth,et al.  Nonribosomal Peptide Synthesis-Principles and Prospects. , 2017, Angewandte Chemie.

[25]  C. Legrand,et al.  Chemical and Genetic Diversity of Nodularia spumigena from the Baltic Sea , 2016, Marine drugs.

[26]  D. Ackerley Cracking the Nonribosomal Code. , 2016, Cell chemical biology.

[27]  Daniel Petras,et al.  Biochemical Dissection of the Natural Diversification of Microcystin Provides Lessons for Synthetic Biology of NRPS. , 2016, Cell chemical biology.

[28]  T. Martin Schmeing,et al.  Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase , 2016, Nature.

[29]  Georgios Skiniotis,et al.  Structures of Two Distinct Conformations of holo-Nonribosomal Peptide Synthetases , 2015, Nature.

[30]  D. Craik,et al.  Improving the Selectivity of Engineered Protease Inhibitors: Optimizing the P2 Prime Residue Using a Versatile Cyclic Peptide Library. , 2015, Journal of medicinal chemistry.

[31]  E. Dittmann,et al.  Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. , 2015, Trends in microbiology.

[32]  Qi Zhao,et al.  IBS: an illustrator for the presentation and visualization of biological sequences , 2015, Bioinform..

[33]  D. Hilvert,et al.  A subdomain swap strategy for reengineering nonribosomal peptides. , 2015, Chemistry & biology.

[34]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[35]  S. Garneau‐Tsodikova,et al.  Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. , 2015, Natural product reports.

[36]  B. Murrell,et al.  RDP4: Detection and analysis of recombination patterns in virus genomes , 2015, Virus evolution.

[37]  Andrej Sali,et al.  A Systematic Computational Analysis of Biosynthetic Gene Cluster Evolution: Lessons for Engineering Biosynthesis , 2014, PLoS Comput. Biol..

[38]  C. Kerfeld,et al.  Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria , 2014, BMC Genomics.

[39]  Richard H Baltz,et al.  Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. , 2014, ACS synthetic biology.

[40]  A. Gulick,et al.  Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases , 2014, Proteins.

[41]  Antonio Quesada,et al.  Oligopeptides as Biomarkers of Cyanobacterial Subpopulations. Toward an Understanding of Their Biological Role , 2014, Toxins.

[42]  K. Ishida,et al.  Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line. , 2014, Angewandte Chemie.

[43]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[44]  K. Sivonen,et al.  Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria , 2013, BMC Evolutionary Biology.

[45]  Jörn Piel,et al.  Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains , 2013 .

[46]  T. Kristensen,et al.  Gene Flow, Recombination, and Selection in Cyanobacteria: Population Structure of Geographically Related Planktothrix Freshwater Strains , 2012, Applied and Environmental Microbiology.

[47]  H. Vlamakis,et al.  Mixing and Matching Siderophore Clusters: Structure and Biosynthesis of Serratiochelins from Serratia sp. V4 , 2012, Journal of the American Chemical Society.

[48]  R. Cox,et al.  Rational domain swaps decipher programming in fungal highly reducing polyketide synthases and resurrect an extinct metabolite. , 2011, Journal of the American Chemical Society.

[49]  T. Hemscheidt,et al.  Genetic Variation of Adenylation Domains of the Anabaenopeptin Synthesis Operon and Evolution of Substrate Promiscuity , 2011, Journal of bacteriology.

[50]  K. Sivonen,et al.  Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). , 2010, Chemistry & biology.

[51]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[52]  H. Jenke-Kodama,et al.  Evolution of metabolic diversity: insights from microbial polyketide synthases. , 2009, Phytochemistry.

[53]  E. Dittmann,et al.  Plasticity and Evolution of Aeruginosin Biosynthesis in Cyanobacteria , 2009, Applied and Environmental Microbiology.

[54]  Jacques Ravel,et al.  Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. , 2009, Methods in enzymology.

[55]  T. Kristensen,et al.  Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera , 2008, BMC Evolutionary Biology.

[56]  Lars-Oliver Essen,et al.  Crystal Structure of the Termination Module of a Nonribosomal Peptide Synthetase , 2008, Science.

[57]  T. Kristensen,et al.  Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). , 2008, Microbiology.

[58]  Christopher T. Walsh,et al.  The evolution of gene collectives: How natural selection drives chemical innovation , 2008, Proceedings of the National Academy of Sciences.

[59]  H. Jenke-Kodama,et al.  Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection , 2008, Nature Biotechnology.

[60]  Thomas Rohrlack,et al.  Recombination and selectional forces in cyanopeptolin NRPS operons from highly similar, but geographically remote Planktothrix strains , 2008, BMC Microbiology.

[61]  T. Kristensen,et al.  Comparison of Cyanopeptolin Genes in Planktothrix, Microcystis, and Anabaena Strains: Evidence for Independent Evolution within Each Genus , 2007, Applied and Environmental Microbiology.

[62]  Kati Laakso,et al.  Recurrent adenylation domain replacement in the microcystin synthetase gene cluster , 2007, BMC Evolutionary Biology.

[63]  David Posada,et al.  An Exact Nonparametric Method for Inferring Mosaic Structure in Sequence Triplets , 2007, Genetics.

[64]  Tilmann Weber,et al.  Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution , 2007, BMC Evolutionary Biology.

[65]  Thomas Börner,et al.  Natural Biocombinatorics in the Polyketide Synthase Genes of the Actinobacterium Streptomyces avermitilis , 2006, PLoS Comput. Biol..

[66]  M. Welker,et al.  Cyanobacterial peptides - nature's own combinatorial biosynthesis. , 2006, FEMS microbiology reviews.

[67]  Rolf Müller,et al.  Evolutionary implications of bacterial polyketide synthases. , 2005, Molecular biology and evolution.

[68]  J. Fastner,et al.  Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. , 2005, Microbiology.

[69]  G. Challis,et al.  Substrate recognition by nonribosomal peptide synthetase multi-enzymes. , 2004, Microbiology.

[70]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[71]  J. Vaitomaa,et al.  Phylogenetic evidence for the early evolution of microcystin synthesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[72]  John Maynard Smith,et al.  Analyzing the mosaic structure of genes , 1992, Journal of Molecular Evolution.

[73]  Gregory L. Challis,et al.  Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  K. Crandall,et al.  Evaluation of methods for detecting recombination from DNA sequences: Computer simulations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Mark J. Gibbs,et al.  Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences , 2000, Bioinform..

[76]  Darren Martin,et al.  RDP: detection of recombination amongst aligned sequences , 2000, Bioinform..

[77]  K. Timmis,et al.  Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells. , 2000, Journal of molecular microbiology and biotechnology.

[78]  S. Sawyer,et al.  Possible emergence of new geminiviruses by frequent recombination. , 1999, Virology.

[79]  J. Majewski,et al.  DNA sequence similarity requirements for interspecific recombination in Bacillus. , 1999, Genetics.

[80]  T. Stachelhaus,et al.  Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. , 1999, Science.

[81]  E. Holmes,et al.  Phylogenetic evidence for recombination in dengue virus. , 1999, Molecular biology and evolution.

[82]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[83]  D. Burke,et al.  Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. , 1995, AIDS research and human retroviruses.