Classification of hyperspectral remote sensing images with support vector machines

This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs). First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces. Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities. To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (i.e., radial basis function neural networks and the K-nearest neighbor classifier). Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data. In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies. Different performance indicators have been used to support our experimental studies in a detailed and accurate way, i.e., the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture. The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data.

[1]  Lorenzo Bruzzone,et al.  Support vector machines for classification of hyperspectral remote-sensing images , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[2]  Jonathan Robinson,et al.  Combining support vector machine learning with the discrete cosine transform in image compression , 2003, IEEE Trans. Neural Networks.

[3]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Joachim M. Buhmann,et al.  Support vector machines for land usage classification in Landsat TM imagery , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[5]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[6]  Philip H. Swain,et al.  Purdue e-Pubs , 2022 .

[7]  John A. Richards,et al.  Cluster-space representation for hyperspectral data classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[8]  J. Kittler,et al.  Feature Set Search Alborithms , 1978 .

[9]  David A. Landgrebe,et al.  Hyperspectral data analysis and supervised feature reduction via projection pursuit , 1999, IEEE Trans. Geosci. Remote. Sens..

[10]  Sebastiano B. Serpico,et al.  Multisource data classification with dependence trees , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[12]  Joydeep Ghosh,et al.  Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[13]  Joydeep Ghosh,et al.  Adaptive Feature Spaces For Land Cover Classification With Limited Ground Truth Data , 2004, Int. J. Pattern Recognit. Artif. Intell..

[14]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[15]  Chih-Jen Lin,et al.  Radius Margin Bounds for Support Vector Machines with the RBF Kernel , 2002, Neural Computation.

[16]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[17]  David A. Landgrebe,et al.  Hierarchical classifier design in high-dimensional numerous class cases , 1991, IEEE Trans. Geosci. Remote. Sens..

[18]  J. Anthony Gualtieri,et al.  Support vector machines for hyperspectral remote sensing classification , 1999, Other Conferences.

[19]  David A. Landgrebe,et al.  Covariance Matrix Estimation and Classification With Limited Training Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[21]  Lorenzo Bruzzone,et al.  An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection , 1995, IEEE Trans. Geosci. Remote. Sens..

[22]  Lorenzo Bruzzone,et al.  A new search algorithm for feature selection in hyperspectral remote sensing images , 2001, IEEE Trans. Geosci. Remote. Sens..

[23]  Maurice G. Kendall,et al.  A Course in the Geometry of n Dimensions , 1962 .

[24]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[25]  J. A. Gualtieri,et al.  Support vector machines for classification of hyperspectral data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[26]  James A. Bucklew,et al.  Support vector machines and the multiple hypothesis test problem , 2001, IEEE Trans. Signal Process..

[27]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Qiong Jackson,et al.  An adaptive classifier design for high-dimensional data analysis with a limited training data set , 2001, IEEE Trans. Geosci. Remote. Sens..

[29]  Fabio Roli,et al.  Support vector machines for remote sensing image classification , 2001, SPIE Remote Sensing.

[30]  Isabelle Guyon,et al.  Comparison of classifier methods: a case study in handwritten digit recognition , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[31]  William Philpot,et al.  A derivative-aided hyperspectral image analysis system for land-cover classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[32]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[33]  Lorenzo Bruzzone,et al.  A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images , 1999, IEEE Trans. Geosci. Remote. Sens..

[34]  David A. Landgrebe,et al.  HYPERSPECTRAL DATA ANALYSIS AND FEATURE REDUCTION VIA PROJECTION PURSUIT , 1999 .

[35]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[36]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[37]  Nikolas P. Galatsanos,et al.  A support vector machine approach for detection of microcalcifications , 2002, IEEE Transactions on Medical Imaging.

[38]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[39]  David A. Landgrebe,et al.  Classification of remote sensing images having high spectral resolution , 1996 .

[41]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[42]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[43]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[44]  David A. Landgrebe,et al.  Covariance estimation with limited training samples , 1999, IEEE Trans. Geosci. Remote. Sens..

[45]  Jon Atli Benediktsson,et al.  Classification of multisource and hyperspectral data based on decision fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[46]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[47]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[48]  Robert F. Cromp,et al.  Support Vector Machine Classifiers as Applied to AVIRIS Data , 1999 .