Partial Subliner Time Approximation and Inapproximation for Maximum Coverage

We develop a randomized approximation algorithm for the classical maximum coverage problem, which given a list of sets $A_1,A_2,\cdots, A_m$ and integer parameter $k$, select $k$ sets $A_{i_1}, A_{i_2},\cdots, A_{i_k}$ for maximum union $A_{i_1}\cup A_{i_2}\cup\cdots\cup A_{i_k}$. In our algorithm, each input set $A_i$ is a black box that can provide its size $|A_i|$, generate a random element of $A_i$, and answer the membership query $(x\in A_i?)$ in $O(1)$ time. Our algorithm gives $(1-{1\over e})$-approximation for maximum coverage problem in $O(p(m))$ time, which is independent of the sizes of the input sets. No existing $O(p(m)n^{1-\epsilon})$ time $(1-{1\over e})$-approximation algorithm for the maximum coverage has been found for any function $p(m)$ that only depends on the number of sets, where $n=\max(|A_1|,\cdots,| A_m|)$ (the largest size of input sets). The notion of partial sublinear time algorithm is introduced. For a computational problem with input size controlled by two parameters $n$ and $m$, a partial sublinear time algorithm for it runs in a $O(p(m)n^{1-\epsilon})$ time or $O(q(n)m^{1-\epsilon})$ time. The maximum coverage has a partial sublinear time $O(p(m))$ constant factor approximation. On the other hand, we show that the maximum coverage problem has no partial sublinear $O(q(n)m^{1-\epsilon})$ time constant factor approximation algorithm. It separates the partial sublinear time computation from the conventional sublinear time computation by disproving the existence of sublinear time approximation algorithm for the maximum coverage problem.

[1]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[2]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[3]  Yuval Filmus,et al.  The Power of Local Search: Maximum Coverage over a Matroid , 2012, STACS.

[4]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[5]  Maxim Sviridenko,et al.  Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..

[6]  Amit Kumar,et al.  Maximum Coverage Problem with Group Budget Constraints and Applications , 2004, APPROX-RANDOM.

[7]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[8]  Aravind Srinivasan,et al.  Distributions on level-sets with applications to approximation algorithms , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[9]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[10]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[11]  Bin Ma,et al.  On the closest string and substring problems , 2002, JACM.

[12]  Bernard Chazelle,et al.  Approximating the Minimum Spanning Tree Weight in Sublinear Time , 2001, ICALP.

[13]  D. Hochbaum,et al.  Analysis of the greedy approach in problems of maximum k‐coverage , 1998 .

[14]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[15]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[16]  Dana Ron,et al.  On Testing Expansion in Bounded-Degree Graphs , 2000, Studies in Complexity and Cryptography.

[17]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[18]  A. Czumaj,et al.  Sub-linear approximation of euclidean minimum spanning tree , 2005 .

[19]  Bin Fu,et al.  Sublinear time width-bounded separators and their application to the protein side-chain packing problem , 2006, J. Comb. Optim..

[20]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[21]  Artur Czumaj,et al.  Estimating the Weight of Metric Minimum Spanning Trees in Sublinear Time , 2009, SIAM J. Comput..

[22]  Reuven Cohen,et al.  The Generalized Maximum Coverage Problem , 2008, Inf. Process. Lett..

[23]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[24]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[25]  Bernard Chazelle,et al.  Sublinear Geometric Algorithms , 2005, SIAM J. Comput..

[26]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[27]  Haitao Wang,et al.  Linear Time Approximation Schemes for Geometric Maximum Coverage , 2015, COCOON.