Global Asymptotical Synchronization of Chaotic Lur'e Systems Using Sampled Data: A Linear Matrix Inequality Approach

Sampled-data feedback control for master-slave synchronization schemes that consist of identical chaotic Lur'e systems is studied. Sufficient conditions for global asymptotic synchronization of such chaotic Lur'e systems are obtained using the free-weighting matrix approach and expressed in terms of linear matrix inequalities (LMIs). With the help of the LMI solvers, the sampled-data feedback control law can easily be obtained to globally asymptotically synchronize Lur'e chaotic systems. The effectiveness of the proposed method is finally illustrated via numerical simulations of chaotic Chua's circuits.

[1]  J. Suykens,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Measurement Feedback , 1998 .

[2]  Guanrong Chen,et al.  Effective chaotic orbit tracker: a prediction-based digital redesign approach , 2000 .

[3]  David J. Hill,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Sadasivan Puthusserypady,et al.  Performance Analysis of Nonlinear-Predictive-Filter-Based Chaotic Synchronization , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Juan Gonzalo Barajas-Ramírez,et al.  Fuzzy Chaos Synchronization via sampled Driving Signals , 2004, Int. J. Bifurc. Chaos.

[6]  Johan A. K. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems with Time-Delay , 2001, Int. J. Bifurc. Chaos.

[7]  H. Dedieu,et al.  CONTROLLING CHAOS IN CHUA’S CIRCUIT VIA SAMPLED INPUTS , 1994 .

[8]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[9]  Guanrong Chen,et al.  Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems , 1999, IEEE Trans. Fuzzy Syst..

[10]  Chi-Chuan Hwang,et al.  Exponential synchronization of a class of neural networks with time-varying delays , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  J. Suykens,et al.  Nonlinear H/sub /spl infin// synchronization of Lur'e systems: dynamic output feedback case , 1997 .

[12]  Juan Gonzalo Barajas-Ramírez,et al.  Robust digital controllers for uncertain chaotic systems: A digital redesign approach☆ , 2007 .

[13]  Johan A. K. Suykens,et al.  Cellular Neural Networks, Multi-Scroll Chaos and Synchronization , 2005 .

[14]  Wei Xing Zheng,et al.  Integral-observer-based chaos synchronization , 2006, IEEE Trans. Circuits Syst. II Express Briefs.

[15]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[16]  Qing-Long Han,et al.  On Designing Time-Varying Delay Feedback Controllers for Master–Slave Synchronization of Lur'e Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Guo-Ping Liu,et al.  Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties , 2004, IEEE Transactions on Automatic Control.

[18]  Juan Gonzalo Barajas-Ramírez,et al.  Hybrid Chaos Synchronization , 2003, Int. J. Bifurc. Chaos.

[19]  Guo-Ping Liu,et al.  Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays , 2004, Syst. Control. Lett..

[20]  J. Suykens,et al.  Nonlinear H Synchronization of Lur ’ e Systems : Dynamic Output Feedback Case , 1997 .

[21]  L. Chua,et al.  The double scroll family , 1986 .

[22]  Tao Yang Control of Chaos Using Sampled-Data Feedback Control , 1998 .

[23]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[24]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[25]  E. Kim,et al.  Adaptive Synchronization of Uncertain Chaotic Systems Based on T–S Fuzzy Model , 2007, IEEE Transactions on Fuzzy Systems.