Branch and Cut

The performance of branch-and-bound methods for integer programming problems has been dramatically improved by incorporating cutting planes. The resulting technique is known as branch-and-cut. Cutting planes are inequalities that can be used to improve the linear programming relaxation of an integer programming problem. They are added as required, at the root node and also elsewhere in the tree. Problem-specific cutting planes have been developed for many classes of problems. Recently, there has been a great interest in improving and refining general classes of cutting planes, including, for example, Gomory cuts. Branch-and-cut algorithms can exploit parallel computers and multicore architecture in a natural way. Branch-and-cut has also been applied to mixed-integer nonlinear programming problems. Keywords: branch-and-cut; cutting planes; combinatorial optimization; linear programming; integer programming

[1]  George B. Dantzig,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, Oper. Res..

[2]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[3]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[4]  G. Nemhauser,et al.  Integer Programming , 2020 .

[5]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[6]  H. Crowder,et al.  Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality , 1980 .

[7]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[8]  Gerhard Reinelt,et al.  A Cutting Plane Algorithm for the Linear Ordering Problem , 1984, Oper. Res..

[9]  M. Grötschel,et al.  Solving matching problems with linear programming , 1985, Math. Program..

[10]  Martin Grötschel,et al.  Facets of the linear ordering polytope , 1985, Math. Program..

[11]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[12]  Martin Grötschel,et al.  Calculating exact ground states of spin glasses: A polyhedral approach , 1987 .

[13]  J. Mitchell Branch-and-Cut Algorithms for Combinatorial Optimization Problems , 1988 .

[14]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[15]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[16]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[17]  M. Padberg,et al.  Addendum: Optimization of a 532-city symmetric traveling salesman problem by branch and cut , 1990 .

[18]  Martin Grötschel,et al.  Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..

[19]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[20]  Michael Jünger,et al.  Practical problem solving with cutting plane algorithms in combinatorialoptimization , 1993, Combinatorial Optimization.

[21]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[22]  Milind Dawande,et al.  Combining and Strengthening Gomory Cuts , 1995, IPCO.

[23]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[24]  Abilio Lucena,et al.  Branch and cut algorithms , 1996 .

[25]  Egon Balas,et al.  Gomory cuts revisited , 1996, Oper. Res. Lett..

[26]  G. Rinaldi,et al.  Exact ground states of two-dimensional ±J Ising spin glasses , 1996 .

[27]  Michael Jünger,et al.  Introduction to ABACUS - a branch-and-cut system , 1998, Oper. Res. Lett..

[28]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[29]  Gábor Pataki,et al.  Solving Integer and Disjunctive Programs by Lift and Project , 1998, IPCO.

[30]  J. Mitchell,et al.  Solving Linear Ordering Problems with a Combined Interior Point/Simplex Cutting Plane Algorithm , 2000 .

[31]  John E. Mitchell,et al.  Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..

[32]  Giovanni Rinaldi,et al.  Branch-And-Cut Algorithms for the Capacitated VRP , 2001, The Vehicle Routing Problem.

[33]  Laurence A. Wolsey,et al.  Aggregation and Mixed Integer Rounding to Solve MIPs , 2001, Oper. Res..

[34]  A. Letchford Totally tight Chv"atal-Gomory cuts , 2002 .

[35]  Adam N. Letchford,et al.  Totally tight Chvátal-Gomory cuts , 2002, Oper. Res. Lett..

[36]  Laurence A. Wolsey,et al.  Cutting planes in integer and mixed integer programming , 2002, Discret. Appl. Math..

[37]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[38]  Michael Perregaard Generating Disjunctive Cuts for Mixed Integer Programs , 2003 .

[39]  Egon Balas,et al.  A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming , 2003, Math. Program..

[40]  François Margot,et al.  Exploiting orbits in symmetric ILP , 2003, Math. Program..

[41]  Laurence A. Wolsey,et al.  A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem , 2003, Networks.

[42]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[43]  Adam N. Letchford,et al.  A new branch-and-cut algorithm for the capacitated vehicle routing problem , 2004, Math. Program..

[44]  G. Reinelt,et al.  2 Computing Exact Ground Statesof Hard Ising Spin Glass Problemsby Branch-and-Cut , 2005 .

[45]  Jon Lee A First Course in Combinatorial Optimization: Appendix: Notation and Terminology , 2004 .

[46]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[47]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[48]  F. B A R A H O N A,et al.  EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING , 2005 .

[49]  Martine Labbé,et al.  A branch and cut algorithm for hub location problems with single assignment , 2005, Math. Program..

[50]  George L. Nemhauser,et al.  A branch-and-cut algorithm for nonconvex quadratic programs with box constraints , 2005, Math. Program..

[51]  François Soumis,et al.  A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem , 2001, Oper. Res..

[52]  Franz Rendl,et al.  Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and Equipartition , 2006, Math. Program..

[53]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[54]  Robert E. Bixby,et al.  Progress in computational mixed integer programming—A look back from the other side of the tipping point , 2007, Ann. Oper. Res..

[55]  Laurence A. Wolsey,et al.  Inequalities from Two Rows of a Simplex Tableau , 2007, IPCO.

[56]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[57]  Robert Ashford,et al.  Mixed integer programming: A historical perspective with Xpress-MP , 2007, Ann. Oper. Res..

[58]  Matteo Fischetti,et al.  Optimizing over the first Chvátal closure , 2005, Math. Program..

[59]  John E. Mitchell,et al.  Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirement , 2007, Discret. Optim..

[60]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[61]  Matteo Fischetti,et al.  Repairing MIP infeasibility through local branching , 2008, Comput. Oper. Res..

[62]  Hanif D. Sherali,et al.  Disjunctive Programming , 2009, Encyclopedia of Optimization.

[63]  John E. Mitchell,et al.  Cutting Plane Methods and Subgradient Methods , 2009 .

[64]  Matthew J. Saltzman,et al.  Computational Experience with a Software Framework for Parallel Integer Programming , 2009, INFORMS J. Comput..

[65]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.

[66]  Egon Balas,et al.  On the enumerative nature of Gomory’s dual cutting plane method , 2010, Math. Program..

[67]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[68]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[69]  Franz Rendl,et al.  Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations , 2009, Math. Program..

[70]  Matteo Fischetti,et al.  Just MIP it! , 2010, Matheuristics.

[71]  Egon Balas,et al.  Lexicography and degeneracy: can a pure cutting plane algorithm work? , 2011, Math. Program..

[72]  Jeff T. Linderoth,et al.  Orbital branching , 2007, Math. Program..

[73]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .