Boosting an evolution strategy with a preprocessing step: application to group scheduling problem in directional sensor networks

This paper presents a two-membered evolution strategy based approach to address the total rotation minimization problem (TRMP) pertaining to directional sensor networks. TRMP is an NP$\mathcal {N}\mathcal {P}$-hard problem. Performance of the proposed approach is enhanced by employing a pre-processing step that utilizes a constructive heuristic and the concept of opposite solutions. We have compared our approach with the best approach available in the literature. The experimental results demonstrate our approach to be highly effective with substantial gain in terms of solution quality, in comparison to the best approach available in the literature. However, our approach requires more time in comparison to this approach.

[1]  Carlos García-Martínez,et al.  An alternative artificial bee colony algorithm with destructive-constructive neighbourhood operator for the problem of composing medical crews , 2016, Inf. Sci..

[2]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[3]  SinghAlok,et al.  A hybrid swarm intelligence approach to the registration area planning problem , 2015 .

[4]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[5]  Thomas Bartz-Beielstein,et al.  Evolution Strategies and Threshold Selection , 2005, Hybrid Metaheuristics.

[6]  Dan Simon,et al.  Oppositional biogeography-based optimization for combinatorial problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[7]  Tom Schaul,et al.  Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[8]  Oliver Kramer,et al.  Finite life span for improving the selection scheme in evolution strategies , 2017, Soft Comput..

[9]  Francisco J. Rodríguez,et al.  An artificial bee colony algorithm for the maximally diverse grouping problem , 2013, Inf. Sci..

[10]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[11]  Bernhard Sendhoff,et al.  Toward a Steady-State Analysis of an Evolution Strategy on a Robust Optimization Problem With Noise-Induced Multimodality , 2017, IEEE Transactions on Evolutionary Computation.

[12]  Youn-Hee Han,et al.  A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks , 2011, Sensors.

[13]  Georg Thierauf,et al.  Evolution strategies for solving discrete optimization problems , 1996 .

[14]  Deborah Estrin,et al.  Cyclops: in situ image sensing and interpretation in wireless sensor networks , 2005, SenSys '05.

[15]  André Rossi,et al.  Group scheduling problems in directional sensor networks , 2015 .

[16]  Congduc Pham,et al.  Adaptive scheduling of wireless video sensor nodes for surveillance applications , 2009, PM2HW2N '09.

[17]  André Rossi,et al.  Lifetime maximization in wireless directional sensor network , 2013, Eur. J. Oper. Res..

[18]  Li Zhao,et al.  A review of opposition-based learning from 2005 to 2012 , 2014, Eng. Appl. Artif. Intell..

[19]  Gerhard Reinelt,et al.  Traveling salesman problem , 2012 .

[20]  Christine Solnon Boosting ACO with a Preprocessing Step , 2002, EvoWorkshops.

[21]  André Rossi,et al.  A genetic algorithm based exact approach for lifetime maximization of directional sensor networks , 2013, Ad Hoc Networks.

[22]  Lei Wang,et al.  A novel oppositional biogeography-based optimization for combinatorial problems , 2014, 2014 10th International Conference on Natural Computation (ICNC).

[23]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops , 2011, Inf. Sci..

[24]  Sanjiv Singh,et al.  Range-only SLAM for robots operating cooperatively with sensor networks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[25]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[26]  Thomas Stützle,et al.  A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem , 2007, Eur. J. Oper. Res..

[27]  Hui Sun,et al.  Artificial Bee Colony Using Opposition-Based Learning , 2014, ICGEC.

[28]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[29]  John Anderson,et al.  An analysis of a large scale habitat monitoring application , 2004, SenSys '04.

[30]  Frederico G. Guimarães,et al.  Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems , 2016, Evolutionary Computation.

[31]  Xiang-Yang Li,et al.  Energy Efficient Target-Oriented Scheduling in Directional Sensor Networks , 2009, IEEE Transactions on Computers.

[32]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[33]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem , 2011, Inf. Sci..

[34]  Dietrich Hartmann,et al.  Optimierung balkenartiger Zylinderschalen aus Stahlbeton mit elastischem und plastischem Werkstoffverhalten , 1974 .

[35]  André Rossi,et al.  On the Cover Scheduling Problem in Wireless Sensor Networks , 2011, INOC.

[36]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[37]  Mehmet Fatih Tasgetiren,et al.  A discrete differential evolution algorithm for the permutation flowshop scheduling problem , 2007, GECCO '07.

[38]  Deying Li,et al.  Coverage Quality Based Target-Oriented Scheduling in Directional Sensor Networks , 2010, 2010 IEEE International Conference on Communications.

[39]  É. Taillard Some efficient heuristic methods for the flow shop sequencing problem , 1990 .

[40]  Bakhtiar Ostadi,et al.  Grouping evolution strategies: An effective approach for grouping problems , 2015 .

[41]  Inyong Ham,et al.  A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem , 1983 .

[42]  Sergey Rodzin,et al.  New computational models for big data and optimization , 2015, 2015 9th International Conference on Application of Information and Communication Technologies (AICT).

[43]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[44]  Alok Singh,et al.  Swarm intelligence approaches for cover scheduling problem in wireless sensor networks , 2015, Int. J. Bio Inspired Comput..

[45]  Minglu Li,et al.  Target-oriented scheduling in directional sensor networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[46]  J. Monnot,et al.  The Traveling Salesman Problem and its Variations , 2014 .

[47]  M. Amaç Güvensan,et al.  On coverage issues in directional sensor networks: A survey , 2011, Ad Hoc Networks.

[48]  Alok Singh,et al.  A hybrid swarm intelligence approach to the registration area planning problem , 2015, Inf. Sci..