A binary PSO-based ensemble under-sampling model for rebalancing imbalanced training data

[1]  Francesco Palmieri,et al.  A combination of clustering-based under-sampling with ensemble methods for solving imbalanced class problem in intelligent systems , 2021 .

[2]  Hamido Fujita,et al.  One-class ensemble classifier for data imbalance problems , 2021, Applied Intelligence.

[3]  Xinyi Chen,et al.  A new over-sampling ensemble approach for imbalanced data , 2021, 2021 International Conference on Big Data Analysis and Computer Science (BDACS).

[4]  Liberios Vokorokos,et al.  Ensemble feature selection using election methods and ranker clustering , 2019, Inf. Sci..

[5]  Min Chen,et al.  Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning , 2019, Knowl. Based Syst..

[6]  Simon Fong,et al.  A suite of swarm dynamic multi-objective algorithms for rebalancing extremely imbalanced datasets , 2017, Appl. Soft Comput..

[7]  S. Fong,et al.  Elitist Binary Wolf Search Algorithm for Heuristic Feature Selection in High-Dimensional Bioinformatics Datasets , 2017, Scientific Reports.

[8]  Mariette Awad,et al.  KerMinSVM for imbalanced datasets with a case study on arabic comics classification , 2017, Eng. Appl. Artif. Intell..

[9]  Simon Fong,et al.  Adaptive Multi-objective Swarm Crossover Optimization for Imbalanced Data Classification , 2016, ADMA.

[10]  S. Fong,et al.  Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification , 2016, BioData Mining.

[11]  Simon Fong,et al.  Improving the classification performance of biological imbalanced datasets by swarm optimization algorithms , 2016, The Journal of Supercomputing.

[12]  Mahmoud Reza Delavar,et al.  Wireless sensors deployment optimization using a constrained Pareto-based multi-objective evolutionary approach , 2016, Eng. Appl. Artif. Intell..

[13]  Simon Fong,et al.  Solving the Under-Fitting Problem for Decision Tree Algorithms by Incremental Swarm Optimization in Rare-Event Healthcare Classification , 2016 .

[14]  Qi Fan,et al.  One-sided Dynamic Undersampling No-Propagation Neural Networks for imbalance problem , 2016, Eng. Appl. Artif. Intell..

[15]  Jinyan Li,et al.  Optimizing SMOTE by Metaheuristics with Neural Network and Decision Tree , 2015, 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI).

[16]  Francisco Herrera,et al.  A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[17]  Yang Wang,et al.  Cost-sensitive boosting for classification of imbalanced data , 2007, Pattern Recognit..

[18]  Yang Wang,et al.  Boosting for Learning Multiple Classes with Imbalanced Class Distribution , 2006, Sixth International Conference on Data Mining (ICDM'06).

[19]  Nitesh V. Chawla,et al.  Editorial: special issue on learning from imbalanced data sets , 2004, SKDD.

[20]  Nitesh V. Chawla,et al.  SMOTEBoost: Improving Prediction of the Minority Class in Boosting , 2003, PKDD.

[21]  Robert C. Holte,et al.  Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria , 2000, ICML.

[22]  Ashwin Srinivasan,et al.  Measuring Performance when Positives Are Rare: Relative Advantage versus Predictive Accuracy - A Biological Case Study , 2000, ECML.

[23]  Salvatore J. Stolfo,et al.  AdaCost: Misclassification Cost-Sensitive Boosting , 1999, ICML.

[24]  Stan Matwin,et al.  Machine Learning for the Detection of Oil Spills in Satellite Radar Images , 1998, Machine Learning.

[25]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[26]  Tom Fawcett,et al.  Combining Data Mining and Machine Learning for Effective User Profiling , 1996, KDD.

[27]  Moninder Singh,et al.  Learning Goal Oriented Bayesian Networks for Telecommunications Risk Management , 1996, ICML.

[28]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[29]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[30]  Simon Fong,et al.  Adaptive multi-objective swarm fusion for imbalanced data classification , 2018, Inf. Fusion.

[31]  Kok-Leong Ong,et al.  Feature selection for high dimensional imbalanced class data using harmony search , 2017, Eng. Appl. Artif. Intell..

[32]  Xiao Liu,et al.  BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification , 2016, Eng. Appl. Artif. Intell..

[33]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[34]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[35]  Taghi M. Khoshgoftaar,et al.  RUSBoost: A Hybrid Approach to Alleviating Class Imbalance , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[36]  Zhi-Hua Zhou,et al.  Exploratory Undersampling for Class-Imbalance Learning , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  Zhao Hui,et al.  Optimal Design of Power System Stabilizer Using Particle Swarm Optimization , 2006 .

[38]  Chao Chen,et al.  Using Random Forest to Learn Imbalanced Data , 2004 .

[39]  Jaideep Srivastava,et al.  A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection , 2003, SDM.

[40]  Edward Y. Chang,et al.  Class-Boundary Alignment for Imbalanced Dataset Learning , 2003 .

[41]  Robert C. Holte,et al.  C4.5, Class Imbalance, and Cost Sensitivity: Why Under-Sampling beats Over-Sampling , 2003 .

[42]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[43]  N. Japkowicz Learning from Imbalanced Data Sets: A Comparison of Various Strategies * , 2000 .