The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs

[1]  A. Speghini,et al.  Physical–Chemical Properties of Biogenic Selenium Nanostructures Produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1 , 2018, Front. Microbiol..

[2]  O. González-Recio,et al.  Comparison of Mothur and QIIME for the Analysis of Rumen Microbiota Composition Based on 16S rRNA Amplicon Sequences , 2018, Front. Microbiol..

[3]  B. Sopko,et al.  Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets , 2018, Front. Microbiol..

[4]  S. Scheu,et al.  Phylogenetic and trophic determinants of gut microbiota in soil oribatid mites , 2018, Soil Biology and Biochemistry.

[5]  Daniel J. Blankenberg,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update , 2018, Nucleic Acids Res..

[6]  J. Nielsen,et al.  Diversity and metabolic potential of the microbiota associated with a soil arthropod , 2018, Scientific Reports.

[7]  A. Ryo,et al.  Genetic Analysis of Human Norovirus Strains in Japan in 2016–2017 , 2018, Front. Microbiol..

[8]  J. Havig,et al.  Hot Spring Microbial Community Composition, Morphology, and Carbon Fixation: Implications for Interpreting the Ancient Rock Record , 2017, Front. Earth Sci..

[9]  B. Sopko,et al.  Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria , 2017, Microbial Ecology.

[10]  J. Hubert,et al.  Experimental Manipulation Shows a Greater Influence of Population than Dietary Perturbation on the Microbiome of Tyrophagus putrescentiae , 2017, Applied and Environmental Microbiology.

[11]  Eric Palevsky,et al.  Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae) , 2017, Scientific Reports.

[12]  A. Swei,et al.  Tick microbiome and pathogen acquisition altered by host blood meal , 2016, The ISME Journal.

[13]  M. Kaltenpoth,et al.  Bacterial communities associated with the ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae of the honey bee (Apis mellifera) , 2017, FEMS microbiology ecology.

[14]  S. Castro-Sowinski,et al.  Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida) , 2017, Polar Biology.

[15]  K. Haag,et al.  Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal , 2016, Parasites & Vectors.

[16]  R. Prill,et al.  Microbiome changes through ontogeny of a tick pathogen vector , 2016, Molecular ecology.

[17]  J. Kopecký,et al.  Assessment of Bacterial Communities in Thirteen Species of Laboratory-Cultured Domestic Mites (Acari: Acaridida) , 2016, Journal of Economic Entomology.

[18]  P. Qian,et al.  Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis , 2016, BMC Bioinformatics.

[19]  P. Convey,et al.  Impact of marine vertebrates on Antarctic terrestrial micro-arthropods , 2016, Antarctic Science.

[20]  Russell V. Lenth,et al.  Least-Squares Means: The R Package lsmeans , 2016 .

[21]  Z. Hua,et al.  Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces , 2015, Applied and Environmental Microbiology.

[22]  E. Fikrig,et al.  Tick microbiome: the force within. , 2015, Trends in parasitology.

[23]  R. Parsons,et al.  Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton , 2015 .

[24]  S. Tsui,et al.  The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. , 2015, The Journal of allergy and clinical immunology.

[25]  E. Stackebrandt,et al.  The Family Dermacoccaceae , 2014 .

[26]  Jasmina Havranek,et al.  Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe's Milk Cheeses , 2013, PloS one.

[27]  P. Convey,et al.  Heat tolerance and physiological plasticity in the Antarctic collembolan, Cryptopygus antarcticus, and mite, Alaskozetes antarcticus , 2013 .

[28]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[29]  D. Minz,et al.  The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae) , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  S. Moquin,et al.  Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites , 2012 .

[31]  Austin G. Davis-Richardson,et al.  Characterization of the Relative Abundance of the Citrus Pathogen Ca. Liberibacter Asiaticus in the Microbiome of Its Insect Vector, Diaphorina citri, using High Throughput 16S rRNA Sequencing , 2012, The open microbiology journal.

[32]  D. Burslem,et al.  Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats , 2012 .

[33]  H. Klenk,et al.  Calidifontibacter indicus gen. nov., sp. nov., a member of the family Dermacoccaceae isolated from a hot spring, and emended description of the family Dermacoccaceae. , 2011, International journal of systematic and evolutionary microbiology.

[34]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[35]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[36]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[37]  L. Whyte,et al.  Microbial Communities in Hydrocarbon-Contaminated Temperate, Tropical, Alpine, and Polar Soils , 2010 .

[38]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[39]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[40]  R. Wirth,et al.  Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis , 2009, Proceedings of the National Academy of Sciences.

[41]  J. Aislabie,et al.  Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica , 2008 .

[42]  P. Hammerstein,et al.  How many species are infected with Wolbachia? – a statistical analysis of current data , 2008, FEMS microbiology letters.

[43]  S. Radwan Microbiology of Oil-Contaminated Desert Soils and Coastal Areas in the Arabian Gulf Region , 2008 .

[44]  D. Denlinger,et al.  Adaptations for the maintenance of water balance by three species of Antarctic mites , 2008, Polar Biology.

[45]  Hadley Wickham,et al.  Reshaping Data with the reshape Package , 2007 .

[46]  A. Bull,et al.  Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench , 2006, Extremophiles.

[47]  John R. Battista,et al.  Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample , 2005, Applied and Environmental Microbiology.

[48]  N. Webster,et al.  Diverse microbial communities inhabit Antarctic sponges. , 2004, Environmental microbiology.

[49]  K. Shimada,et al.  Variation in summer cold-hardiness of the Antarctic oribatid mite Alaskozetes antarcticus from contrasting habitats on King George Island , 1992, Polar Biology.

[50]  J. Boomsma,et al.  Tetraponera ants have gut symbionts related to nitrogen–fixing root–nodule bacteria , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[51]  M. Worland,et al.  The effect of feeding on specific soil algae on the cold-hardiness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus) , 2000, Polar Biology.

[52]  J. Aislabie,et al.  Cold-tolerant alkane-degrading Rhodococcus species from Antarctica , 2000, Polar Biology.

[53]  A. Joern,et al.  Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acrididae) , 1997, Oecologia.

[54]  P. Vandamme,et al.  Cutting a gordian knot: Emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom nov (basonym, Cytophaga aquatilis Strohl and Tait 1978). , 1996 .

[55]  William Block,et al.  The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus , 1995 .

[56]  P. Convey Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus , 1994 .

[57]  P. Convey Sex ratio, oviposition and early development of the Antarctic oribatid mite Alaskozetes antarcticus (Acari: Cryptostigmata) with observations on other oribatids , 1994 .

[58]  W. Block,et al.  Experimental studies on the cold tolerance of Alaskozetes antarcticus , 1980 .

[59]  L. Golberg,et al.  Preliminary studies on the nutritional requirements of the bedbug (Cimex leotularius L.) and the tick Ornithodorus moubata Murray. , 1947, The Journal of experimental biology.