Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity

Abstract The aim of this paper is to compare a hyperelastic with a hypoelastic model describing the Eulerian dynamics of solids in the context of non-linear elastoplastic deformations. Specifically, we consider the well-known hypoelastic Wilkins model, which is compared against a hyperelastic model based on the work of Godunov and Romenski. First, we discuss some general conceptual differences of the two approaches. Second, a detailed study of both models is proposed, where differences are made evident at the aid of deriving a hypoelastic-type model corresponding to the hyperelastic model and a particular equation of state used in this paper. Third, using the same high order ADER Finite Volume and Discontinuous Galerkin methods on fixed and moving unstructured meshes for both models, a wide range of numerical benchmark test problems has been solved. The numerical solutions obtained for the two different models are directly compared with each other. For small elastic deformations, the two models produce very similar solutions that are close to each other. However, if large elastic or elastoplastic deformations occur, the solutions present larger differences.

[1]  Rémi Abgrall,et al.  A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids , 2013, J. Comput. Phys..

[2]  L. A. Merzhievskii,et al.  Shock-wave processes in metals , 1985 .

[3]  David H. Sharp,et al.  A conservative formulation for plasticity , 1992 .

[4]  S. L. Gavrilyuk,et al.  Diffuse interface model for compressible fluid - Compressible elastic-plastic solid interaction , 2012, J. Comput. Phys..

[5]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[6]  J. Stewart,et al.  On transient relativistic thermodynamics and kinetic theory. Il , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  S. Gavrilyuk,et al.  A Well-posed Hypoelastic Model Derived From a Hyperelastic One , 2015, Dynamic Damage and Fragmentation.

[8]  K. Kamrin,et al.  Continuum modelling and simulation of granular flows through their many phases , 2014, Journal of Fluid Mechanics.

[9]  J. Glimm,et al.  A model for rate-dependent plasticity , 1995 .

[10]  Raphaël Loubère,et al.  High Order Accurate Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Non-Conservative Hyperbolic Systems with Stiff Source Terms , 2017 .

[11]  S. K. Godunov,et al.  Nonstationary equations of nonlinear elasticity theory in eulerian coordinates , 1972 .

[12]  I. Rutkevich The propagation of small perturbations in a viscoelastic fluid: PMM vol. 34, n≗1, 1970, pp. 41–56 , 1970 .

[13]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[14]  V. Ju,et al.  A Conservative Eulerian Formulation of the Equations for Elastic Flow , 2003 .

[15]  J. Maxwell,et al.  The Dynamical Theory of Gases , 1905, Nature.

[16]  J. F. Besseling A Thermodynamic Approach to Rheology , 1968 .

[17]  S. Godunov,et al.  Hydrodynamic Effects in Colliding Solids , 1970 .

[18]  J. F. Besseling,et al.  Mathematical Modelling of Inelastic Deformation , 1994 .

[19]  A. I. Leonov Nonequilibrium thermodynamics and rheology of viscoelastic polymer media , 1976 .

[20]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[21]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  N. Bourne,et al.  Constitutive modeling of fracture waves , 2003 .

[23]  H. S. Udaykumar,et al.  Simulation of high speed impact, penetration and fragmentation problems on locally refined Cartesian grids , 2013, J. Comput. Phys..

[24]  J. Hirschfelder Kinetic Theory of Liquids. , 1956 .

[25]  Stéphane Clain,et al.  The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems , 2013 .

[26]  Michael Dumbser,et al.  A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes , 2004, J. Comput. Phys..

[27]  Dimitris Drikakis,et al.  An Eulerian finite‐volume scheme for large elastoplastic deformations in solids , 2010 .

[28]  D. Eakins,et al.  Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics. , 2015, Physical review letters.

[29]  W. Israel Nonstationary irreversible thermodynamics: A Causal relativistic theory , 1976 .

[30]  Neil J. Balmforth,et al.  Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics , 2014 .

[31]  Michael Dumbser,et al.  Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity , 2016 .

[32]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[33]  Ilya Peshkov,et al.  On a pure hyperbolic alternative to the Navier-Stokes equations , 2014 .

[34]  Dochan Kwak,et al.  Computational Fluid Dynamics Review 2010 , 2010 .

[35]  Heng Xiao,et al.  Choice of objective rate in single parameter hypoelastic deformation cycles , 2006 .

[36]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes , 2016, J. Comput. Phys..

[37]  Michael Dumbser,et al.  Central Weighted ENO Schemes for Hyperbolic Conservation Laws on Fixed and Moving Unstructured Meshes , 2017, SIAM J. Sci. Comput..

[38]  S. K. Godunov Symmetric form of the magnetohydrodynamic equation , 1972 .

[39]  P. T. Barton A level-set based Eulerian method for simulating problems involving high strain-rate fracture and fragmentation , 2018, International Journal of Impact Engineering.

[40]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[41]  I︠A︡kov Ilʹich Frenkelʹ Kinetic Theory of Liquids , 1955 .

[42]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .

[43]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[44]  S. K. Godunov,et al.  Elements of continuum mechanics , 1978 .

[46]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[47]  A. Kulikovskii,et al.  Mathematical Aspects of Numerical Solution of Hyperbolic Systems , 1998, physics/9807053.

[48]  Angelo Iollo,et al.  A Cartesian scheme for compressible multimaterial models in 3D , 2016, J. Comput. Phys..

[49]  A. D. Resnyansky,et al.  DISLOCATION STRUCTURE IN THE MODELS OF DYNAMIC DEFORMATION AND FRACTURE OF METALS , 1985 .

[50]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[51]  Angelo Iollo,et al.  A Cartesian Scheme for Compressible Multimaterial Hyperelastic Models with Plasticity , 2017 .

[52]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[53]  J. N. Johnson,et al.  Dislocation Dynamics and Single‐Crystal Constitutive Relations: Shock‐Wave Propagation and Precursor Decay , 1970 .

[54]  Sylvie Benzoni-Gavage,et al.  Multi-dimensional hyperbolic partial differential equations , 2006 .

[55]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[56]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[57]  Bruno Despres,et al.  A Geometrical Approach to Nonconservative Shocks and Elastoplastic Shocks , 2007 .

[58]  I. Rutkevich On the thermodynamic interpretation of the evolutionary conditions of the equations of the mechanics of finitely deformable viscoelastic media of maxwell type: PMM vol. 36, n≗2, 1972, pp. 306–319 , 1972 .

[59]  Michael Dumbser,et al.  A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws , 2014 .

[60]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[61]  Nicolas Favrie,et al.  Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form , 2014 .

[62]  M. Torrilhon Modeling Nonequilibrium Gas Flow Based on Moment Equations , 2016 .

[63]  J. Marchal,et al.  Loss of evolution in the flow of viscoelastic fluids , 1986 .

[64]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[65]  S. Godunov,et al.  Use of relaxation viscoelastic model in calculating uniaxial homogeneous strains and refining the interpolation equations for maxwellian viscosity , 1975 .

[66]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[67]  R. Bullough,et al.  Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  E. I. Romensky,et al.  Thermodynamics and Hyperbolic Systems of Balance Laws in Continuum Mechanics , 2001 .

[69]  J. Saut,et al.  Change of type and loss of evolution in the flow of viscoelastic fluids , 1986 .

[70]  Jacques Massoni,et al.  Impact simulation by an Eulerian model for interaction of multiple elastic-plastic solids and fluids , 2017 .

[71]  B. Wendroff,et al.  Cell-centered Lagrangian Lax–Wendroff HLL hybrid method for elasto-plastic flows , 2017 .

[72]  Vladimir A. Titarev,et al.  Exact and approximate solutions of Riemann problems in non-linear elasticity , 2009, J. Comput. Phys..

[73]  Chi-Wang Shu,et al.  A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters , 2005, SIAM J. Sci. Comput..

[74]  D. S. Wood,et al.  Dislocation Mobility in Copper , 1967 .

[75]  E. I. Romenskii Deformation model for brittle materials and the structure of failure waves , 2007 .

[76]  Bruno Després,et al.  Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..

[77]  Nicolas Favrie,et al.  Dynamics of shock waves in elastic-plastic solids , 2011 .

[78]  G. J. Ball,et al.  A free-Lagrange augmented Godunov method for the simulation of elastic-plastic solids , 2002 .

[79]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[80]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[81]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[82]  A. D. Resnyansky,et al.  The role of numerical simulation in the study of high-velocity impact , 1995 .

[83]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[84]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[85]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics , 2016, J. Comput. Phys..

[86]  P. Saramito A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model , 2009 .

[87]  Manuel Jesús Castro Díaz,et al.  Well-Balanced High Order Extensions of Godunov's Method for Semilinear Balance Laws , 2008, SIAM J. Numer. Anal..

[88]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[89]  Michael Dumbser,et al.  Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws , 2015, J. Comput. Phys..

[90]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[91]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[92]  J. Oldroyd A rational formulation of the equations of plastic flow for a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[93]  A. Putz,et al.  The solid–fluid transition in a yield stress shear thinning physical gel , 2009 .

[94]  Manuel Jesús Castro Díaz,et al.  On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas , 2007, J. Comput. Phys..

[95]  A. J. Gil,et al.  A first‐order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme , 2017 .

[96]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[97]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[98]  Jianxian Qiu,et al.  An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws , 2013, Adv. Comput. Math..

[99]  Antonio J. Gil,et al.  Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics , 2013 .

[100]  S. Godunov,et al.  Systems of thermodynamically coordinated laws of conservation invariant under rotations , 1996 .

[101]  John A. Trangenstein,et al.  Numerical algorithms for strong discontinuities in elastic-plastic solids , 1992 .

[102]  Ralf Deiterding,et al.  Eulerian adaptive finite-difference method for high-velocity impact and penetration problems , 2013, J. Comput. Phys..

[103]  Numerical simulation of discontinuous solutions in nonlinear elasticity theory , 2009 .

[104]  Phillip Colella,et al.  A higher-order Godunov method for modeling finite deformation in elastic-plastic solids , 1991 .

[105]  Jerry S. Brock,et al.  Benchmark solution of the dynamic response of a spherical shell at finite strain , 2017 .

[106]  Walter Noll,et al.  On the Continuity of the Solid and Fluid States , 1955 .

[107]  Richard Saurel,et al.  Modelling wave dynamics of compressible elastic materials , 2008, J. Comput. Phys..

[108]  S. Godunov,et al.  Elements of Continuum Mechanics and Conservation Laws , 2003, Springer US.

[109]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[110]  E. I. Romenskii Hypoelastic form of equations in nonlinear elasticity theory , 1974 .

[111]  Michael Dumbser,et al.  Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors , 2011, J. Comput. Phys..

[112]  Miroslav Grmela,et al.  Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations , 2017, Continuum Mechanics and Thermodynamics.

[113]  V. I. Kondaurov Equations of elastoviscoplastic medium with finite deformations , 1982 .

[114]  Olivier Pouliquen,et al.  Granular Media: Between Fluid and Solid , 2013 .

[115]  Rogelio Ortigosa,et al.  A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity , 2015 .

[116]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[117]  Michael Dumbser,et al.  An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes , 2016, J. Sci. Comput..

[118]  Ilya Peshkov,et al.  Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium , 2010 .

[119]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[120]  Phillip Colella,et al.  A high-order Eulerian Godunov method for elastic-plastic flow in solids , 2001 .

[121]  Alain Goriely,et al.  Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics , 2012 .

[122]  I-Shih Liu,et al.  Relativistic thermodynamics of gases , 1986 .

[123]  Carl Eckart,et al.  The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity , 1948 .

[124]  M. Semplice,et al.  Adaptive Mesh Refinement for Hyperbolic Systems Based on Third-Order Compact WENO Reconstruction , 2014, Journal of Scientific Computing.

[125]  Michael Dumbser,et al.  Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting , 2014, 1412.0081.

[126]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[127]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[128]  A. I. Leonov On a class of constitutive equations for viscoelastic liquids , 1987 .

[129]  Hyun Gyu Kim A comparative study of hyperelastic and hypoelastic material models with constant elastic moduli for large deformation problems , 2016 .

[130]  E. I. Romensky,et al.  Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics , 1998 .

[131]  C. M. Lund,et al.  A constitutive model for strain rates from 10−4 to 106 s−1 , 1989 .

[132]  Angelo Iollo,et al.  A simple Cartesian scheme for compressible multimaterials , 2014, J. Comput. Phys..

[133]  Walter Boscheri,et al.  High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes , 2016, Archives of Computational Methods in Engineering.

[134]  Sylvie Benzoni-Gavage,et al.  Multidimensional hyperbolic partial differential equations : first-order systems and applications , 2006 .

[135]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[136]  Milos Kojic,et al.  Studies of finite element procedures—Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation , 1987 .

[137]  E. Kröner The Dislocation as a Fundamental New Concept in Continuum Mechanics , 1963 .

[138]  Michael Dumbser,et al.  A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes , 2016, J. Comput. Phys..

[139]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[140]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[141]  Nathaniel R. Morgan,et al.  Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR) , 2015, J. Comput. Phys..

[142]  A. Green Hypo-elasticity and plasticity , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[143]  J. Stewart On transient relativistic thermodynamics and kinetic theory , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[144]  Feng Wang,et al.  A Conservative Eulerian Numerical Scheme for Elastoplasticity and Application to Plate Impact Problems , 1993, IMPACT Comput. Sci. Eng..

[145]  William J. Rider,et al.  Enhanced Verification Test Suite for Physics Simulation Codes , 2008 .

[146]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[147]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[148]  Miroslav Grmela,et al.  Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions , 2015 .

[149]  P. T. Barton,et al.  On Computational Modelling of Strain-Hardening Material Dynamics , 2012 .

[150]  Nicolas Favrie,et al.  Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation , 2015, J. Comput. Phys..

[151]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[152]  D. Steinberg,et al.  Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements , 1974 .

[153]  Michael Dumbser,et al.  A unified hyperbolic formulation for viscous fluids and elastoplastic solids , 2016, 1705.02151.

[154]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[155]  W. Johnston,et al.  Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals , 1959 .

[156]  L. A. Merzhievskii,et al.  Deformation and collapse of hollow conical casing , 1987 .

[157]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[158]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[159]  Mikhail Shashkov,et al.  A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .

[160]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[161]  Michael Dumbser,et al.  Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.

[162]  Stéphane Clain,et al.  The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems. , 2012 .

[163]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[164]  Nikolaos Nikiforakis,et al.  A multi-physics methodology for the simulation of reactive flow and elastoplastic structural response , 2017, J. Comput. Phys..

[165]  J. Clayton,et al.  Analysis of nonlinear elastic aspects of precursor attenuation in shock-compressed metallic crystals , 2018 .

[166]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[167]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .