Optimal global conformal surface parameterization

All orientable metric surfaces are Riemann surfaces and admit global conformal parameterizations. Riemann surface structure is a fundamental structure and governs many natural physical phenomena, such as heat diffusion and electro-magnetic fields on the surface. A good parameterization is crucial for simulation and visualization. This paper provides an explicit method for finding optimal global conformal parameterizations of arbitrary surfaces. It relies on certain holomorphic differential forms and conformal mappings from differential geometry and Riemann surface theories. Algorithms are developed to modify topology, locate zero points, and determine cohomology types of differential forms. The implementation is based on a finite dimensional optimization method. The optimal parameterization is intrinsic to the geometry, preserves angular structure, and can play an important role in various applications including texture mapping, remeshing, morphing and simulation. The method is demonstrated by visualizing the Riemann surface structure of real surfaces represented as triangle meshes.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[3]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[4]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[5]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[6]  S. Yau,et al.  Lectures on Harmonic Maps , 1997 .

[7]  Jürgen Jost,et al.  Compact Riemann Surfaces - An Introduction to Contemporary Mathematics, Third Edition , 2006, Universitext.

[8]  Ron Kikinis,et al.  Conformal Geometry and Brain Flattening , 1999, MICCAI.

[9]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[10]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[11]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[12]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[13]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[14]  M. Troyanov Les surfaces euclidiennes à singularités coniques. (Euclidean surfaces with cone singularities). , 1986 .

[15]  W. Stuetzle,et al.  HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .

[16]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[17]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[18]  Bruno Lévy Dual domain extrapolation , 2003, ACM Trans. Graph..

[19]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[20]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[21]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[22]  Kenneth Stephenson The approximation of conformal structures via circle packing , 1999 .

[23]  C. Mercat Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.

[24]  Alla Sheffer,et al.  Matchmaker: constructing constrained texture maps , 2003, ACM Trans. Graph..

[25]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[26]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.