A new perspective on the molecular dating of the brown trout complex with an extended phylogeographic information on the species in Serbia

To elucidate the historical biogeography of a species, the patterns of population divergence must be understood, and the evolutionary history of the species must be accurately known. For brown trout (Salmo trutta complex), estimating divergence times remains a challenge due to the lack of well-defined time calibration points and insufficient phylogeographic coverage in previous studies. The present work aims to improve molecular dating of mitochondrial control region sequences by using a multicalibration framework based on the latest paleogeological evidence for dating the origin of Lake Ohrid and two available Salmo fossils, including the overlooked Salmo immigratus. Our results clearly show that, contrary to common belief, the major divisions within the brown trout occurred in the Late Pliocene, not the Pleistocene. The Pliocene origin suggests that the brown trout lineages did not form because of geo(hydro)morphological changes during glaciation cycles but may be the result of orogeny and drainage evolution. In addition, increased sampling, particularly in Serbia, led to the identification of a new haplogroup (da-int) occupying an intermediate position with respect to da-es and da-bs haplogroups. While the control region can delineate brown trout lineages, its phylogenetic resolution is limited, so even extensive sampling could not further resolve the lineage level polytomies.

[1]  L. Kruckenhauser,et al.  The minnow Phoxinus lumaireul (Leuciscidae) shifts the Adriatic–Black Sea basin divide in the north‐western Dinaric Karst region , 2022, Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology.

[2]  C. Tougard Will the genomics revolution finally solve the Salmo systematics? , 2022, Hydrobiologia.

[3]  S. Marić,et al.  Perils of brown trout (Salmo spp.) mitigation-driven translocations: a case study from the Vlasina Plateau, Southeast Serbia , 2022, Biological Invasions.

[4]  L. Bernatchez,et al.  A Genomic Perspective on an Old Question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? , 2021, Molecular phylogenetics and evolution.

[5]  S. Marić,et al.  Nuclear DNA reveals multiple waves of colonisation, reticulate evolution and a large impact of stocking on trout in north-west Africa , 2021, Hydrobiologia.

[6]  C. Olariu,et al.  Filling of sedimentary basins and the birth of large rivers: The lower Danube network in the Dacian Basin, Romania , 2021 .

[7]  B. Guinand,et al.  Brown trout phylogenetics: a persistent mirage towards (too) many species. , 2021, Journal of fish biology.

[8]  Ivana Špelić,et al.  Diversity of brown trout, Salmo trutta (Actinopterygii: Salmoniformes: Salmonidae), in the Danube River basin of Croatia revealed by mitochondrial DNA , 2020 .

[9]  Ivana Špelić,et al.  Alternative Life-History in Native Trout (Salmo spp.) Suppresses the Invasive Effect of Alien Trout Strains Introduced Into Streams in the Western Part of the Balkans , 2020, Frontiers in Ecology and Evolution.

[10]  D. Turan,et al.  A new species of trout from the northern drainages of Euphrates River, Turkey (Salmoniformes: Salmonidae). , 2020, Journal of fish biology.

[11]  A. Timmermann,et al.  Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years , 2019, Nature.

[12]  M. Böhme,et al.  Possible species-flock scenario for the evolution of the cyprinid genus Capoeta (Cypriniformes: Cyprinidae) within late Neogene lake systems of the Armenian Highland , 2019, PloS one.

[13]  A. Matoshko,et al.  The Plio–Pleistocene Demise of the East Carpathian Foreland Fluvial System and Arrival of the Paleo-Danube To The Black Sea , 2019, Geologica Carpathica.

[14]  Á. Osz,et al.  The genetic status of the Hungarian brown trout populations: exploration of a blind spot on the European map of Salmo trutta studies , 2018, PeerJ.

[15]  E. Douzery,et al.  Salmo macrostigma (Teleostei, Salmonidae): Nothing more than a brown trout (S. trutta) lineage? , 2018, Journal of fish biology.

[16]  E. Boulygina,et al.  High-throughput sequencing of the mitochondrial genomes from archived fish scales: an example of the endangered putative species flock of Sevan trout Salmo ischchan , 2018, Hydrobiologia.

[17]  L. Bernatchez,et al.  Inferring phylogenetic structure, hybridization and divergence times within Salmoninae (Teleostei: Salmonidae) using RAD-sequencing. , 2018, Molecular phylogenetics and evolution.

[18]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[19]  D. Tarkhnishvili,et al.  Phylogeography and taxonomic status of trout and salmon from the Ponto‐Caspian drainages, with inferences on European Brown Trout evolution and taxonomy , 2018, Ecology and evolution.

[20]  J. Freyhof,et al.  Ancient connections among the European rivers and watersheds revealed from the evolutionary history of the genus Telestes (Actinopterygii; Cypriniformes) , 2017, PloS one.

[21]  L. A. Golovina,et al.  Paratethys response to the Messinian salinity crisis , 2017 .

[22]  D. Milošević,et al.  Diversity of brown trout Salmo cf. trutta in the River Danube basin of Western Balkans as assessed from the structure of their mitochondrial Control Region haplotypes , 2017, Journal of Ichthyology.

[23]  P. Simonović,et al.  Haplotype diversity of brown trout Salmo trutta (L.) in the broader Iron Gate area , 2016 .

[24]  S. Marić,et al.  Lack of mtDNA variation among remote middle Volga and upper Ural brown trout suggests recent and rapid recolonization , 2016 .

[25]  C. Bouza,et al.  Phylogenetic diversity within the endemic brown trout Duero lineage: implications for conservation and management , 2015 .

[26]  M. Đurić,et al.  BUTTERFLIES OF THE VLASINA REGION IN SOUTHEAST SERBIA (LEPIDOPTERA: PAPILIONOIDEA) , 2015 .

[27]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[28]  Sebastián Duchêne,et al.  Simulating and detecting autocorrelation of molecular evolutionary rates among lineages , 2015, Molecular ecology resources.

[29]  M. Harzhauser,et al.  A gastropod-based biogeographic scheme for the European Neogene freshwater systems , 2015 .

[30]  C. Glotzbach,et al.  Plio-Pleistocene evolution of the north Alpine drainage system: new constraints from detrital thermochronology of foreland deposits , 2015, International Journal of Earth Sciences.

[31]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[32]  D. Mrdak,et al.  New Mitochondrial DNA Haplotype of Brown Trout Salmo trutta L. from Crni Timok Drainage Area in Serbia , 2014 .

[33]  A. Snoj,et al.  Molecular phylogeny of Salmo of the western Balkans, based upon multiple nuclear loci , 2014, Genetics Selection Evolution.

[34]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[35]  T. Schenekar,et al.  Fine-scale phylogeographic contact zone in Austrian brown trout Salmo trutta reveals multiple waves of post-glacial colonization and a pre-dominance of natural versus anthropogenic admixture , 2014, Conservation Genetics.

[36]  Todd H. Oakley,et al.  Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae. , 2013, Molecular phylogenetics and evolution.

[37]  A. Apostolou,et al.  Genetic diversity and phylogenetic origin of brown trout Salmo trutta populations in eastern Balkans , 2013, Biologia.

[38]  L. Bernatchez,et al.  Framing the Salmonidae Family Phylogenetic Portrait: A More Complete Picture from Increased Taxon Sampling , 2012, PloS one.

[39]  L. Bernatchez,et al.  Phylogenetic status of brown trout Salmo trutta populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach. , 2012, Journal of fish biology.

[40]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[41]  J. Kohout,et al.  Effects of stocking on the genetic structure of brown trout, Salmo trutta, in Central Europe inferred from mitochondrial and nuclear DNA markers , 2012 .

[42]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[43]  Daniel L. Ayres,et al.  BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics , 2011, Systematic biology.

[44]  S. Marić,et al.  Phylogeographic structure and demographic patterns of brown trout in North-West Africa. , 2011, Molecular phylogenetics and evolution.

[45]  Alexei J. Drummond,et al.  Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.

[46]  С. Х. Пипоян,et al.  Ископаемые рыбы Армении , 2011 .

[47]  C. Bouza,et al.  Phylogeography, genetic structure, and conservation of the endangered Caspian brown trout, Salmo trutta caspius (Kessler, 1877), from Iran , 2011, Hydrobiologia.

[48]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[49]  M. Cortey,et al.  Maintenance of an endemic lineage of brown trout (Salmo trutta) within the Duero river basin , 2010 .

[50]  B. Pelster,et al.  Alpine headwater streams as reservoirs of remnant populations of the Danubian clade of brown trout , 2010 .

[51]  P. Gibbard,et al.  Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma , 2010 .

[52]  A. Osinov Iranian samples of brown trout Salmo trutta or rainbow trout Oncorhynchus mykiss: Comparison of evidence from allozyme and mitochondrial DNA control region sequence analysis , 2009, Journal of Ichthyology.

[53]  P. Gibbard,et al.  IUGS ratification of the Quaternary System / Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. , 2009 .

[54]  J. Stevens,et al.  Complete mitochondrial control region sequences indicate a distinct variety of brown trout Salmo trutta in the Aral Sea. , 2009, Journal of fish biology.

[55]  C. Bouza,et al.  Morphological variation in a secondary contact between divergent lineages of brown trout (Salmo trutta) from the Iberian Peninsula , 2009, Genetics and molecular biology.

[56]  A. Beck,et al.  Late Cenozoic surface uplift revealed by incision by the River Euphrates at Birecik, southeast Turkey , 2008 .

[57]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[58]  R. Westaway,et al.  Terrace staircases of the River Euphrates in southeast Turkey, northern Syria and western Iraq: evidence for regional surface uplift , 2007 .

[59]  A. Legakis,et al.  Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. , 2007, Molecular phylogenetics and evolution.

[60]  B. Pelster,et al.  Trout (Salmo trutta) mitochondrial DNA polymorphism in the centre of the marble trout distribution area , 2007, Hydrobiologia.

[61]  I. Magyar,et al.  Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean , 2006 .

[62]  S. Marić,et al.  Phylogeographic study of brown trout from Serbia, based on mitochondrial DNA control region analysis , 2006, Genetics Selection Evolution.

[63]  Alexandros Stamatakis,et al.  Phylogenetic models of rate heterogeneity: a high performance computing perspective , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[64]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[65]  O. Ozdemır,et al.  Phylogeography of the Turkish brown trout Salmo trutta L.: mitochondrial DNA PCR‐RFLP variation , 2006 .

[66]  S. Weiss,et al.  Genetic and morphological characterization of a Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to sympatric Salmo trutta , 2006 .

[67]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[68]  S. Weiss,et al.  Genetic verification of native brown trout from the Persian Gulf (Catak Cay River, Tigris basin) , 2005 .

[69]  M. Cortey,et al.  Historical biogeography of Mediterranean trout. , 2004, Molecular phylogenetics and evolution.

[70]  Daniel H. Huson,et al.  Constructing splits graphs , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[71]  S. Weiss,et al.  Enhanced phylogeographic information about Austrian brown trout populations derived from complete mitochondrial control region sequences , 2003 .

[72]  L. Bernatchez,et al.  Phylogeographic congruence between mtDNA and rDNA ITS markers in brown trout. , 2002, Molecular biology and evolution.

[73]  V. Moulton,et al.  Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.

[74]  F. Uiblein,et al.  Status, habitat use, and vulnerability of the European ggrayling in Austrian waters , 2001 .

[75]  A. Machordom,et al.  Evolution of the mitochondrial control region in Palaearctic brown trout (Salmo trutta) populations: the biogeographical role of the Iberian Peninsula , 2001, Heredity.

[76]  C. Schlötterer,et al.  Haplotype (mtDNA) diversity of brown trout Salmo trutta in tributaries of the Austrian Danube: massive introgression of Atlantic basin fish — by man or nature? , 2001, Molecular ecology.

[77]  L. Bernatchez THE EVOLUTIONARY HISTORY OF BROWN TROUT (SALMO TRUTTA L.) INFERRED FROM PHYLOGEOGRAPHIC, NESTED CLADE, AND MISMATCH ANALYSES OF MITOCHONDRIAL DNA VARIATION , 2001, Evolution; international journal of organic evolution.

[78]  F. Hilgen,et al.  The base of the Zanclean Stage and of the Pliocene Series , 2000 .

[79]  Mark P. Simmons,et al.  Gaps as characters in sequence-based phylogenetic analyses. , 2000, Systematic biology.

[80]  M Steel,et al.  Invariable sites models and their use in phylogeny reconstruction. , 2000, Systematic biology.

[81]  R. Zardoya,et al.  Molecular Evidence on the Evolutionary and Biogeographical Patterns of European Cyprinids , 1999, Journal of Molecular Evolution.

[82]  C. Triantaphyllidis,et al.  Mitochondrial DNA sequence variation and phylogeography among Salmo trutta L. (Greek brown trout) populations , 1997, Molecular ecology.

[83]  M. Newton,et al.  Phylogenetic Inference for Binary Data on Dendograms Using Markov Chain Monte Carlo , 1997 .

[84]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.

[85]  Ziheng Yang Estimating the pattern of nucleotide substitution , 1994, Journal of Molecular Evolution.

[86]  L. Bernatchez,et al.  DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Saltno trutta populations , 1992, Molecular ecology.

[87]  T. Pietsch,et al.  Evolution of the salmonid mitochondrial control region. , 1992, Molecular phylogenetics and evolution.

[88]  A. Dress,et al.  Split decomposition: a new and useful approach to phylogenetic analysis of distance data. , 1992, Molecular phylogenetics and evolution.

[89]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[90]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[91]  W. Brown,et al.  Rapid evolution of animal mitochondrial DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. Kotusz,et al.  A treatise about reliability in dating events of evolutionary history of brown trout Salmo cf. trutta (Actinopterygii) at Western Balkans: Impassable barriers, isolation of populations and assistance of geological timeframe , 2023 .

[93]  W. Krijgsman,et al.  Paratethyan ostracods in the Spanish Lago-Mare: More evidence for interbasinal exchange at high Mediterranean sea level , 2016 .

[94]  S. Marić,et al.  Phylogeography of stream-dwelling trout in the Republic of Macedonia and a molecular genetic basis for revision of the taxonomy proposed by S. Karaman , 2016, Hydrobiologia.

[95]  N. Özen Türkiye'deki alabalıkların (Salmo trutta L.) moleküler filogenisi , 2013 .

[96]  A. Crivelli,et al.  Molecular Sciences Genetic Diversity and Conservation of the Prespa Trout in the Balkans , 2022 .

[97]  J. Keogh,et al.  Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. , 2012, Systematic biology.

[98]  S. Weiss,et al.  Reticulate evolution: ancient introgression of the Adriatic brown trout mtDNA in softmouth trout Salmo obtusirostris (Teleostei: Salmonidae) , 2007 .

[99]  G. Jouannic,et al.  Chronology of the Messinian events and paleogeography of the Mediterranean region s.l , 2007 .

[100]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[101]  K. Müller SeqState: primer design and sequence statistics for phylogenetic DNA datasets. , 2005, Applied bioinformatics.

[102]  H. Bandelt,et al.  Median-joining networks for inferring intraspecific phylogenies. , 1999, Molecular biology and evolution.

[103]  L. Bernatchez,et al.  Atlantic and Danubian phylogenetic groupings of brown trout Salmo trutta complex: genetic divergence, evolution, and conservation , 1996 .

[104]  P. Bianco Potential role of the palaeohistory of the Mediterranean and Paratethys basins on the early dispersal of Euro-Mediterranean freshwater fishes , 1990 .